System and method of multi-sensor fusion of physiological measurements

A system and method for fusing independent measures of the physiological parameter uses a Kalman filter for each possible combination of sensor measurements. The Kalman filter utilize probability density functions of a nominal error contamination model and a prediction error model as well as past es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: EBRAHIM, MEHBOOB H, FELDMAN, JEFFREY M
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator EBRAHIM
MEHBOOB H
FELDMAN
JEFFREY M
description A system and method for fusing independent measures of the physiological parameter uses a Kalman filter for each possible combination of sensor measurements. The Kalman filter utilize probability density functions of a nominal error contamination model and a prediction error model as well as past estimates of the physiological parameter to produce the Kalman filter outputs. A confidence calculator uses Bayesian statistical analysis to determine a confidence level for each of the Kalman filter outputs, and selects a fused estimate for the physiological parameter based on the confidence level. The fused estimate and the confidence level are used to dynamically update the nominal error contamination model and prediction error model to create an adaptive measurement system. The confidence calculator also takes into account the probability of artifactual error contamination in any or all of the sensor measurements. The system assumes a worst case analysis of the artifactual error contamination, thus producing a robust model able to adapt to any probability density function of the artifactual error and a priori probability of artifact.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US5626140A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US5626140A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US5626140A3</originalsourceid><addsrcrecordid>eNrjZHALriwuSc1VSMxLUchNLcnIT1HIT1PILc0pydQtTs0rzi9SSCstzszPAwkXZFQCmTn56ZnJiTlA5YnFpUWpual5JcU8DKxpiTnFqbxQmptB3s01xNlDN7UgPz61uCAxOTUvtSQ-NNjUzMjM0MTA0ZiwCgCgqzOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System and method of multi-sensor fusion of physiological measurements</title><source>esp@cenet</source><creator>EBRAHIM; MEHBOOB H ; FELDMAN; JEFFREY M</creator><creatorcontrib>EBRAHIM; MEHBOOB H ; FELDMAN; JEFFREY M</creatorcontrib><description>A system and method for fusing independent measures of the physiological parameter uses a Kalman filter for each possible combination of sensor measurements. The Kalman filter utilize probability density functions of a nominal error contamination model and a prediction error model as well as past estimates of the physiological parameter to produce the Kalman filter outputs. A confidence calculator uses Bayesian statistical analysis to determine a confidence level for each of the Kalman filter outputs, and selects a fused estimate for the physiological parameter based on the confidence level. The fused estimate and the confidence level are used to dynamically update the nominal error contamination model and prediction error model to create an adaptive measurement system. The confidence calculator also takes into account the probability of artifactual error contamination in any or all of the sensor measurements. The system assumes a worst case analysis of the artifactual error contamination, thus producing a robust model able to adapt to any probability density function of the artifactual error and a priori probability of artifact.</description><edition>6</edition><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>1997</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=19970506&amp;DB=EPODOC&amp;CC=US&amp;NR=5626140A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=19970506&amp;DB=EPODOC&amp;CC=US&amp;NR=5626140A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>EBRAHIM; MEHBOOB H</creatorcontrib><creatorcontrib>FELDMAN; JEFFREY M</creatorcontrib><title>System and method of multi-sensor fusion of physiological measurements</title><description>A system and method for fusing independent measures of the physiological parameter uses a Kalman filter for each possible combination of sensor measurements. The Kalman filter utilize probability density functions of a nominal error contamination model and a prediction error model as well as past estimates of the physiological parameter to produce the Kalman filter outputs. A confidence calculator uses Bayesian statistical analysis to determine a confidence level for each of the Kalman filter outputs, and selects a fused estimate for the physiological parameter based on the confidence level. The fused estimate and the confidence level are used to dynamically update the nominal error contamination model and prediction error model to create an adaptive measurement system. The confidence calculator also takes into account the probability of artifactual error contamination in any or all of the sensor measurements. The system assumes a worst case analysis of the artifactual error contamination, thus producing a robust model able to adapt to any probability density function of the artifactual error and a priori probability of artifact.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>1997</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHALriwuSc1VSMxLUchNLcnIT1HIT1PILc0pydQtTs0rzi9SSCstzszPAwkXZFQCmTn56ZnJiTlA5YnFpUWpual5JcU8DKxpiTnFqbxQmptB3s01xNlDN7UgPz61uCAxOTUvtSQ-NNjUzMjM0MTA0ZiwCgCgqzOA</recordid><startdate>19970506</startdate><enddate>19970506</enddate><creator>EBRAHIM; MEHBOOB H</creator><creator>FELDMAN; JEFFREY M</creator><scope>EVB</scope></search><sort><creationdate>19970506</creationdate><title>System and method of multi-sensor fusion of physiological measurements</title><author>EBRAHIM; MEHBOOB H ; FELDMAN; JEFFREY M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US5626140A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>1997</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>EBRAHIM; MEHBOOB H</creatorcontrib><creatorcontrib>FELDMAN; JEFFREY M</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>EBRAHIM; MEHBOOB H</au><au>FELDMAN; JEFFREY M</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System and method of multi-sensor fusion of physiological measurements</title><date>1997-05-06</date><risdate>1997</risdate><abstract>A system and method for fusing independent measures of the physiological parameter uses a Kalman filter for each possible combination of sensor measurements. The Kalman filter utilize probability density functions of a nominal error contamination model and a prediction error model as well as past estimates of the physiological parameter to produce the Kalman filter outputs. A confidence calculator uses Bayesian statistical analysis to determine a confidence level for each of the Kalman filter outputs, and selects a fused estimate for the physiological parameter based on the confidence level. The fused estimate and the confidence level are used to dynamically update the nominal error contamination model and prediction error model to create an adaptive measurement system. The confidence calculator also takes into account the probability of artifactual error contamination in any or all of the sensor measurements. The system assumes a worst case analysis of the artifactual error contamination, thus producing a robust model able to adapt to any probability density function of the artifactual error and a priori probability of artifact.</abstract><edition>6</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US5626140A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title System and method of multi-sensor fusion of physiological measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=EBRAHIM;%20MEHBOOB%20H&rft.date=1997-05-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS5626140A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true