Optically corrected helmet mounted display

The present invention eliminates the relay lens systems found in conventional helmet mounted displays (HMDs) by removing field distortions and aberrations with a contoured fiber optic faceplate placed in close proximity to a liquid crystal display (LCD) or cathode ray tube. The optical system typica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: RALLISON, RICHARD D
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator RALLISON
RICHARD D
description The present invention eliminates the relay lens systems found in conventional helmet mounted displays (HMDs) by removing field distortions and aberrations with a contoured fiber optic faceplate placed in close proximity to a liquid crystal display (LCD) or cathode ray tube. The optical system typically consists of a spherical dielectric or holographically made collimator-combiner, a dielectric or holographically made fold mirror, and a contoured fiber optic faceplate. The fold mirror is flat, and the collimator-combiner is made by coating a spherical eye glass blank. The system is configured as a folded and tilted catadioptric projector with the novel feature being the contoured faceplate. There are no dispersive elements in the imaging assembly which means it can be completely polychromatic (full color) without the need for additional color correction optics as found in all refractive color systems. When designed for full color, highest brightness, and see through capability it must be made with two or three narrow spectral and angular sensitive coatings on the fold mirror and on the collimator-combiner. These coatings allow the use of a tilt of the collimator-combiner with respect to the fold mirror which induces a small amount of astigmatism and keystone distortion but at the same time allows image light to pass through the folded optics to the eye with a minimum of loss. The elimination of a corrective refractive lens relay system makes this design polychromatic, less expensive, and lighter in weight, compared to a similar system with an achromatized and corrected refractive lens.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US5303085A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US5303085A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US5303085A3</originalsourceid><addsrcrecordid>eNrjZNDyLyjJTE7MyalUSM4vKkpNLklNUchIzclNLVHIzS_NA3FTMosLchIreRhY0xJzilN5oTQ3g7yba4izh25qQX58anFBYnJqXmpJfGiwqbGBsYGFqaMxYRUAwp8oyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Optically corrected helmet mounted display</title><source>esp@cenet</source><creator>RALLISON; RICHARD D</creator><creatorcontrib>RALLISON; RICHARD D</creatorcontrib><description>The present invention eliminates the relay lens systems found in conventional helmet mounted displays (HMDs) by removing field distortions and aberrations with a contoured fiber optic faceplate placed in close proximity to a liquid crystal display (LCD) or cathode ray tube. The optical system typically consists of a spherical dielectric or holographically made collimator-combiner, a dielectric or holographically made fold mirror, and a contoured fiber optic faceplate. The fold mirror is flat, and the collimator-combiner is made by coating a spherical eye glass blank. The system is configured as a folded and tilted catadioptric projector with the novel feature being the contoured faceplate. There are no dispersive elements in the imaging assembly which means it can be completely polychromatic (full color) without the need for additional color correction optics as found in all refractive color systems. When designed for full color, highest brightness, and see through capability it must be made with two or three narrow spectral and angular sensitive coatings on the fold mirror and on the collimator-combiner. These coatings allow the use of a tilt of the collimator-combiner with respect to the fold mirror which induces a small amount of astigmatism and keystone distortion but at the same time allows image light to pass through the folded optics to the eye with a minimum of loss. The elimination of a corrective refractive lens relay system makes this design polychromatic, less expensive, and lighter in weight, compared to a similar system with an achromatized and corrected refractive lens.</description><edition>5</edition><language>eng</language><subject>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS ; OPTICS ; PHYSICS</subject><creationdate>1994</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=19940412&amp;DB=EPODOC&amp;CC=US&amp;NR=5303085A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=19940412&amp;DB=EPODOC&amp;CC=US&amp;NR=5303085A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>RALLISON; RICHARD D</creatorcontrib><title>Optically corrected helmet mounted display</title><description>The present invention eliminates the relay lens systems found in conventional helmet mounted displays (HMDs) by removing field distortions and aberrations with a contoured fiber optic faceplate placed in close proximity to a liquid crystal display (LCD) or cathode ray tube. The optical system typically consists of a spherical dielectric or holographically made collimator-combiner, a dielectric or holographically made fold mirror, and a contoured fiber optic faceplate. The fold mirror is flat, and the collimator-combiner is made by coating a spherical eye glass blank. The system is configured as a folded and tilted catadioptric projector with the novel feature being the contoured faceplate. There are no dispersive elements in the imaging assembly which means it can be completely polychromatic (full color) without the need for additional color correction optics as found in all refractive color systems. When designed for full color, highest brightness, and see through capability it must be made with two or three narrow spectral and angular sensitive coatings on the fold mirror and on the collimator-combiner. These coatings allow the use of a tilt of the collimator-combiner with respect to the fold mirror which induces a small amount of astigmatism and keystone distortion but at the same time allows image light to pass through the folded optics to the eye with a minimum of loss. The elimination of a corrective refractive lens relay system makes this design polychromatic, less expensive, and lighter in weight, compared to a similar system with an achromatized and corrected refractive lens.</description><subject>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</subject><subject>OPTICS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>1994</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNDyLyjJTE7MyalUSM4vKkpNLklNUchIzclNLVHIzS_NA3FTMosLchIreRhY0xJzilN5oTQ3g7yba4izh25qQX58anFBYnJqXmpJfGiwqbGBsYGFqaMxYRUAwp8oyA</recordid><startdate>19940412</startdate><enddate>19940412</enddate><creator>RALLISON; RICHARD D</creator><scope>EVB</scope></search><sort><creationdate>19940412</creationdate><title>Optically corrected helmet mounted display</title><author>RALLISON; RICHARD D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US5303085A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>1994</creationdate><topic>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</topic><topic>OPTICS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>RALLISON; RICHARD D</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>RALLISON; RICHARD D</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Optically corrected helmet mounted display</title><date>1994-04-12</date><risdate>1994</risdate><abstract>The present invention eliminates the relay lens systems found in conventional helmet mounted displays (HMDs) by removing field distortions and aberrations with a contoured fiber optic faceplate placed in close proximity to a liquid crystal display (LCD) or cathode ray tube. The optical system typically consists of a spherical dielectric or holographically made collimator-combiner, a dielectric or holographically made fold mirror, and a contoured fiber optic faceplate. The fold mirror is flat, and the collimator-combiner is made by coating a spherical eye glass blank. The system is configured as a folded and tilted catadioptric projector with the novel feature being the contoured faceplate. There are no dispersive elements in the imaging assembly which means it can be completely polychromatic (full color) without the need for additional color correction optics as found in all refractive color systems. When designed for full color, highest brightness, and see through capability it must be made with two or three narrow spectral and angular sensitive coatings on the fold mirror and on the collimator-combiner. These coatings allow the use of a tilt of the collimator-combiner with respect to the fold mirror which induces a small amount of astigmatism and keystone distortion but at the same time allows image light to pass through the folded optics to the eye with a minimum of loss. The elimination of a corrective refractive lens relay system makes this design polychromatic, less expensive, and lighter in weight, compared to a similar system with an achromatized and corrected refractive lens.</abstract><edition>5</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US5303085A
source esp@cenet
subjects OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
OPTICS
PHYSICS
title Optically corrected helmet mounted display
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=RALLISON;%20RICHARD%20D&rft.date=1994-04-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS5303085A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true