Remote seismic sensing
Methods and apparatus are provided for remotely sensing motions of the earth from the Doppler shift of reflected electromagnetic waves. The apparatus is based on a heterodyne continuous wave or pulsed laser system. The airborne laser system described herein is intended to remotely sense seismic moti...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | BERNI ALBERT J |
description | Methods and apparatus are provided for remotely sensing motions of the earth from the Doppler shift of reflected electromagnetic waves. The apparatus is based on a heterodyne continuous wave or pulsed laser system. The airborne laser system described herein is intended to remotely sense seismic motion. Motion of the earth's surface, when coupled to a reflector, causes a continuously shifting frequency (Doppler) of the reflected sensing laser beam, the Doppler frequency being proportional to the particle velocity of the ground. The method uses electromagnetic waves reflected from reflectors, some of which are coupled to the earth's surface. Similarly, "inertial" reflective surfaces (i.e., vibrationally isolated from any earth motions) are also located at the surface of the earth and employed by the apparatus and methods of the present invention. Both an inertial reflector and an earth-coupled reflector are positioned at each location for which seismic signals are desired. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US5109362A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US5109362A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US5109362A3</originalsourceid><addsrcrecordid>eNrjZBALSs3NL0lVKE7NLM7NTAbSecWZeek8DKxpiTnFqbxQmptB3s01xNlDN7UgPz61uCAxOTUvtSQ-NNjU0MDS2MzI0ZiwCgAptyDr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Remote seismic sensing</title><source>esp@cenet</source><creator>BERNI; ALBERT J</creator><creatorcontrib>BERNI; ALBERT J</creatorcontrib><description>Methods and apparatus are provided for remotely sensing motions of the earth from the Doppler shift of reflected electromagnetic waves. The apparatus is based on a heterodyne continuous wave or pulsed laser system. The airborne laser system described herein is intended to remotely sense seismic motion. Motion of the earth's surface, when coupled to a reflector, causes a continuously shifting frequency (Doppler) of the reflected sensing laser beam, the Doppler frequency being proportional to the particle velocity of the ground. The method uses electromagnetic waves reflected from reflectors, some of which are coupled to the earth's surface. Similarly, "inertial" reflective surfaces (i.e., vibrationally isolated from any earth motions) are also located at the surface of the earth and employed by the apparatus and methods of the present invention. Both an inertial reflector and an earth-coupled reflector are positioned at each location for which seismic signals are desired.</description><language>eng</language><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES ; DETECTING MASSES OR OBJECTS ; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES ; MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC ORINFRASONIC WAVES ; MEASURING ; PHYSICS ; RADIO DIRECTION-FINDING ; RADIO NAVIGATION ; TESTING</subject><creationdate>1992</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=19920428&DB=EPODOC&CC=US&NR=5109362A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=19920428&DB=EPODOC&CC=US&NR=5109362A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BERNI; ALBERT J</creatorcontrib><title>Remote seismic sensing</title><description>Methods and apparatus are provided for remotely sensing motions of the earth from the Doppler shift of reflected electromagnetic waves. The apparatus is based on a heterodyne continuous wave or pulsed laser system. The airborne laser system described herein is intended to remotely sense seismic motion. Motion of the earth's surface, when coupled to a reflector, causes a continuously shifting frequency (Doppler) of the reflected sensing laser beam, the Doppler frequency being proportional to the particle velocity of the ground. The method uses electromagnetic waves reflected from reflectors, some of which are coupled to the earth's surface. Similarly, "inertial" reflective surfaces (i.e., vibrationally isolated from any earth motions) are also located at the surface of the earth and employed by the apparatus and methods of the present invention. Both an inertial reflector and an earth-coupled reflector are positioned at each location for which seismic signals are desired.</description><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</subject><subject>MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC ORINFRASONIC WAVES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>RADIO DIRECTION-FINDING</subject><subject>RADIO NAVIGATION</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>1992</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZBALSs3NL0lVKE7NLM7NTAbSecWZeek8DKxpiTnFqbxQmptB3s01xNlDN7UgPz61uCAxOTUvtSQ-NNjU0MDS2MzI0ZiwCgAptyDr</recordid><startdate>19920428</startdate><enddate>19920428</enddate><creator>BERNI; ALBERT J</creator><scope>EVB</scope></search><sort><creationdate>19920428</creationdate><title>Remote seismic sensing</title><author>BERNI; ALBERT J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US5109362A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>1992</creationdate><topic>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</topic><topic>MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC ORINFRASONIC WAVES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>RADIO DIRECTION-FINDING</topic><topic>RADIO NAVIGATION</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>BERNI; ALBERT J</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BERNI; ALBERT J</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Remote seismic sensing</title><date>1992-04-28</date><risdate>1992</risdate><abstract>Methods and apparatus are provided for remotely sensing motions of the earth from the Doppler shift of reflected electromagnetic waves. The apparatus is based on a heterodyne continuous wave or pulsed laser system. The airborne laser system described herein is intended to remotely sense seismic motion. Motion of the earth's surface, when coupled to a reflector, causes a continuously shifting frequency (Doppler) of the reflected sensing laser beam, the Doppler frequency being proportional to the particle velocity of the ground. The method uses electromagnetic waves reflected from reflectors, some of which are coupled to the earth's surface. Similarly, "inertial" reflective surfaces (i.e., vibrationally isolated from any earth motions) are also located at the surface of the earth and employed by the apparatus and methods of the present invention. Both an inertial reflector and an earth-coupled reflector are positioned at each location for which seismic signals are desired.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US5109362A |
source | esp@cenet |
subjects | ANALOGOUS ARRANGEMENTS USING OTHER WAVES DETECTING MASSES OR OBJECTS DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES GEOPHYSICS GRAVITATIONAL MEASUREMENTS LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC ORINFRASONIC WAVES MEASURING PHYSICS RADIO DIRECTION-FINDING RADIO NAVIGATION TESTING |
title | Remote seismic sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BERNI;%20ALBERT%20J&rft.date=1992-04-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS5109362A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |