Ammonia scavenger
A new and useful particulate magnesium phosphate product (MGP) and method of use therefor are disclosed for removing ammonia from aqueous solutions, e.g., recirculating dialysate solutions and intragastrointestinal fluids as may result from the hydrolysis of urea. This particulate magnesium phosphat...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HOF CRAIG R POLAK ROBERT B |
description | A new and useful particulate magnesium phosphate product (MGP) and method of use therefor are disclosed for removing ammonia from aqueous solutions, e.g., recirculating dialysate solutions and intragastrointestinal fluids as may result from the hydrolysis of urea. This particulate magnesium phosphate product (MGP) acts as a remarkably effective scavenger wherein under equilibrium conditions only about six (6) grams of the novel product are required to bind the ammonia (more exactly, ammonium ions) liberated from one (1) gram of the urea, a result far superior to traditional zirconium phosphate (ZP) prior art materials which under ideal conditions require about 17-20 grams of ZP per gram of urea. The novel particulate magnesium phosphate product can be exploited in one embodiment as a replacement for the older ZP materials used to remove ammonia produced by enzymatic hydrolysis of urea in recirculating dialysis systems utilizing disposable cartridges. In another embodiment, in a new encapsulated product (comprising a water-insoluble, membranous wall, permeable to urea and/or ammonia and water, while impermeable to urease enzyme, wherein the wall surrounds a core of urease and the novel particulate magnesium phosphate product) is disclosed, which can also be used as an in vivo or in vitro scavenger. This particulate MGP product can also be used for the removal of ammonium ions either produced by enzymatic or non-enzymatic hydrolysis of urea or proteins or amino acids or available as NH4+ from its native source. A new method is also disclosed for the preparation of the novel particulate magnesium phosphate product. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US4650587A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US4650587A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US4650587A3</originalsourceid><addsrcrecordid>eNrjZBB0zM3Nz8tMVChOTixLzUtPLeJhYE1LzClO5YXS3Azybq4hzh66qQX58anFBYnJqXmpJfGhwSZmpgamFuaOxoRVAABe4x8I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Ammonia scavenger</title><source>esp@cenet</source><creator>HOF; CRAIG R ; POLAK; ROBERT B</creator><creatorcontrib>HOF; CRAIG R ; POLAK; ROBERT B</creatorcontrib><description>A new and useful particulate magnesium phosphate product (MGP) and method of use therefor are disclosed for removing ammonia from aqueous solutions, e.g., recirculating dialysate solutions and intragastrointestinal fluids as may result from the hydrolysis of urea. This particulate magnesium phosphate product (MGP) acts as a remarkably effective scavenger wherein under equilibrium conditions only about six (6) grams of the novel product are required to bind the ammonia (more exactly, ammonium ions) liberated from one (1) gram of the urea, a result far superior to traditional zirconium phosphate (ZP) prior art materials which under ideal conditions require about 17-20 grams of ZP per gram of urea. The novel particulate magnesium phosphate product can be exploited in one embodiment as a replacement for the older ZP materials used to remove ammonia produced by enzymatic hydrolysis of urea in recirculating dialysis systems utilizing disposable cartridges. In another embodiment, in a new encapsulated product (comprising a water-insoluble, membranous wall, permeable to urea and/or ammonia and water, while impermeable to urease enzyme, wherein the wall surrounds a core of urease and the novel particulate magnesium phosphate product) is disclosed, which can also be used as an in vivo or in vitro scavenger. This particulate MGP product can also be used for the removal of ammonium ions either produced by enzymatic or non-enzymatic hydrolysis of urea or proteins or amino acids or available as NH4+ from its native source. A new method is also disclosed for the preparation of the novel particulate magnesium phosphate product.</description><edition>4</edition><language>eng</language><subject>CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOIDCHEMISTRY ; CHEMISTRY ; COMPOUNDS THEREOF ; INORGANIC CHEMISTRY ; METALLURGY ; NON-METALLIC ELEMENTS ; PERFORMING OPERATIONS ; PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL ; SEPARATION ; THEIR RELEVANT APPARATUS ; TRANSPORTING ; TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE</subject><creationdate>1987</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=19870317&DB=EPODOC&CC=US&NR=4650587A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=19870317&DB=EPODOC&CC=US&NR=4650587A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HOF; CRAIG R</creatorcontrib><creatorcontrib>POLAK; ROBERT B</creatorcontrib><title>Ammonia scavenger</title><description>A new and useful particulate magnesium phosphate product (MGP) and method of use therefor are disclosed for removing ammonia from aqueous solutions, e.g., recirculating dialysate solutions and intragastrointestinal fluids as may result from the hydrolysis of urea. This particulate magnesium phosphate product (MGP) acts as a remarkably effective scavenger wherein under equilibrium conditions only about six (6) grams of the novel product are required to bind the ammonia (more exactly, ammonium ions) liberated from one (1) gram of the urea, a result far superior to traditional zirconium phosphate (ZP) prior art materials which under ideal conditions require about 17-20 grams of ZP per gram of urea. The novel particulate magnesium phosphate product can be exploited in one embodiment as a replacement for the older ZP materials used to remove ammonia produced by enzymatic hydrolysis of urea in recirculating dialysis systems utilizing disposable cartridges. In another embodiment, in a new encapsulated product (comprising a water-insoluble, membranous wall, permeable to urea and/or ammonia and water, while impermeable to urease enzyme, wherein the wall surrounds a core of urease and the novel particulate magnesium phosphate product) is disclosed, which can also be used as an in vivo or in vitro scavenger. This particulate MGP product can also be used for the removal of ammonium ions either produced by enzymatic or non-enzymatic hydrolysis of urea or proteins or amino acids or available as NH4+ from its native source. A new method is also disclosed for the preparation of the novel particulate magnesium phosphate product.</description><subject>CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOIDCHEMISTRY</subject><subject>CHEMISTRY</subject><subject>COMPOUNDS THEREOF</subject><subject>INORGANIC CHEMISTRY</subject><subject>METALLURGY</subject><subject>NON-METALLIC ELEMENTS</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL</subject><subject>SEPARATION</subject><subject>THEIR RELEVANT APPARATUS</subject><subject>TRANSPORTING</subject><subject>TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>1987</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZBB0zM3Nz8tMVChOTixLzUtPLeJhYE1LzClO5YXS3Azybq4hzh66qQX58anFBYnJqXmpJfGhwSZmpgamFuaOxoRVAABe4x8I</recordid><startdate>19870317</startdate><enddate>19870317</enddate><creator>HOF; CRAIG R</creator><creator>POLAK; ROBERT B</creator><scope>EVB</scope></search><sort><creationdate>19870317</creationdate><title>Ammonia scavenger</title><author>HOF; CRAIG R ; POLAK; ROBERT B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US4650587A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>1987</creationdate><topic>CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOIDCHEMISTRY</topic><topic>CHEMISTRY</topic><topic>COMPOUNDS THEREOF</topic><topic>INORGANIC CHEMISTRY</topic><topic>METALLURGY</topic><topic>NON-METALLIC ELEMENTS</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL</topic><topic>SEPARATION</topic><topic>THEIR RELEVANT APPARATUS</topic><topic>TRANSPORTING</topic><topic>TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE</topic><toplevel>online_resources</toplevel><creatorcontrib>HOF; CRAIG R</creatorcontrib><creatorcontrib>POLAK; ROBERT B</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HOF; CRAIG R</au><au>POLAK; ROBERT B</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Ammonia scavenger</title><date>1987-03-17</date><risdate>1987</risdate><abstract>A new and useful particulate magnesium phosphate product (MGP) and method of use therefor are disclosed for removing ammonia from aqueous solutions, e.g., recirculating dialysate solutions and intragastrointestinal fluids as may result from the hydrolysis of urea. This particulate magnesium phosphate product (MGP) acts as a remarkably effective scavenger wherein under equilibrium conditions only about six (6) grams of the novel product are required to bind the ammonia (more exactly, ammonium ions) liberated from one (1) gram of the urea, a result far superior to traditional zirconium phosphate (ZP) prior art materials which under ideal conditions require about 17-20 grams of ZP per gram of urea. The novel particulate magnesium phosphate product can be exploited in one embodiment as a replacement for the older ZP materials used to remove ammonia produced by enzymatic hydrolysis of urea in recirculating dialysis systems utilizing disposable cartridges. In another embodiment, in a new encapsulated product (comprising a water-insoluble, membranous wall, permeable to urea and/or ammonia and water, while impermeable to urease enzyme, wherein the wall surrounds a core of urease and the novel particulate magnesium phosphate product) is disclosed, which can also be used as an in vivo or in vitro scavenger. This particulate MGP product can also be used for the removal of ammonium ions either produced by enzymatic or non-enzymatic hydrolysis of urea or proteins or amino acids or available as NH4+ from its native source. A new method is also disclosed for the preparation of the novel particulate magnesium phosphate product.</abstract><edition>4</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US4650587A |
source | esp@cenet |
subjects | CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOIDCHEMISTRY CHEMISTRY COMPOUNDS THEREOF INORGANIC CHEMISTRY METALLURGY NON-METALLIC ELEMENTS PERFORMING OPERATIONS PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL SEPARATION THEIR RELEVANT APPARATUS TRANSPORTING TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE |
title | Ammonia scavenger |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HOF;%20CRAIG%20R&rft.date=1987-03-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS4650587A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |