Ammonia scavenger
A new and useful particulate magnesium phosphate product (MGP) and method of use therefor are disclosed for removing ammonia from aqueous solutions, e.g., recirculating dialysate solutions and intragastrointestinal fluids as may result from the hydrolysis of urea. This particulate magnesium phosphat...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new and useful particulate magnesium phosphate product (MGP) and method of use therefor are disclosed for removing ammonia from aqueous solutions, e.g., recirculating dialysate solutions and intragastrointestinal fluids as may result from the hydrolysis of urea. This particulate magnesium phosphate product (MGP) acts as a remarkably effective scavenger wherein under equilibrium conditions only about six (6) grams of the novel product are required to bind the ammonia (more exactly, ammonium ions) liberated from one (1) gram of the urea, a result far superior to traditional zirconium phosphate (ZP) prior art materials which under ideal conditions require about 17-20 grams of ZP per gram of urea. The novel particulate magnesium phosphate product can be exploited in one embodiment as a replacement for the older ZP materials used to remove ammonia produced by enzymatic hydrolysis of urea in recirculating dialysis systems utilizing disposable cartridges. In another embodiment, in a new encapsulated product (comprising a water-insoluble, membranous wall, permeable to urea and/or ammonia and water, while impermeable to urease enzyme, wherein the wall surrounds a core of urease and the novel particulate magnesium phosphate product) is disclosed, which can also be used as an in vivo or in vitro scavenger. This particulate MGP product can also be used for the removal of ammonium ions either produced by enzymatic or non-enzymatic hydrolysis of urea or proteins or amino acids or available as NH4+ from its native source. A new method is also disclosed for the preparation of the novel particulate magnesium phosphate product. |
---|