Detecting Fraudulent User Flows

Mechanisms are provided for detecting fraudulent user flows associated with a website. User flow data, representing an interaction by a user with content of a website, is received and converted to a vector representation that represents a time series transition from one portion of website content to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Agmon, Noga, Benusovich, Shimon, Finkelshtein, Andrey
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Agmon, Noga
Benusovich, Shimon
Finkelshtein, Andrey
description Mechanisms are provided for detecting fraudulent user flows associated with a website. User flow data, representing an interaction by a user with content of a website, is received and converted to a vector representation that represents a time series transition from one portion of website content to another of the website. The vector representation is input to a trained sequential machine learning computer model which generates a classification of the vector representation. A determination as to whether or not the user flow data represents a fraudulent user flow is made based on the classification. An output is generated that indicates whether or not the user flow is a fraudulent user flow based on the detection.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024422183A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024422183A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024422183A13</originalsourceid><addsrcrecordid>eNrjZJB3SS1JTS7JzEtXcCtKLE0pzUnNK1EILU4tUnDLyS8v5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGJiZGRoYWxo6GxsSpAgCt_iWt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Detecting Fraudulent User Flows</title><source>esp@cenet</source><creator>Agmon, Noga ; Benusovich, Shimon ; Finkelshtein, Andrey</creator><creatorcontrib>Agmon, Noga ; Benusovich, Shimon ; Finkelshtein, Andrey</creatorcontrib><description>Mechanisms are provided for detecting fraudulent user flows associated with a website. User flow data, representing an interaction by a user with content of a website, is received and converted to a vector representation that represents a time series transition from one portion of website content to another of the website. The vector representation is input to a trained sequential machine learning computer model which generates a classification of the vector representation. A determination as to whether or not the user flow data represents a fraudulent user flow is made based on the classification. An output is generated that indicates whether or not the user flow is a fraudulent user flow based on the detection.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241219&amp;DB=EPODOC&amp;CC=US&amp;NR=2024422183A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241219&amp;DB=EPODOC&amp;CC=US&amp;NR=2024422183A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Agmon, Noga</creatorcontrib><creatorcontrib>Benusovich, Shimon</creatorcontrib><creatorcontrib>Finkelshtein, Andrey</creatorcontrib><title>Detecting Fraudulent User Flows</title><description>Mechanisms are provided for detecting fraudulent user flows associated with a website. User flow data, representing an interaction by a user with content of a website, is received and converted to a vector representation that represents a time series transition from one portion of website content to another of the website. The vector representation is input to a trained sequential machine learning computer model which generates a classification of the vector representation. A determination as to whether or not the user flow data represents a fraudulent user flow is made based on the classification. An output is generated that indicates whether or not the user flow is a fraudulent user flow based on the detection.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJB3SS1JTS7JzEtXcCtKLE0pzUnNK1EILU4tUnDLyS8v5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGJiZGRoYWxo6GxsSpAgCt_iWt</recordid><startdate>20241219</startdate><enddate>20241219</enddate><creator>Agmon, Noga</creator><creator>Benusovich, Shimon</creator><creator>Finkelshtein, Andrey</creator><scope>EVB</scope></search><sort><creationdate>20241219</creationdate><title>Detecting Fraudulent User Flows</title><author>Agmon, Noga ; Benusovich, Shimon ; Finkelshtein, Andrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024422183A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Agmon, Noga</creatorcontrib><creatorcontrib>Benusovich, Shimon</creatorcontrib><creatorcontrib>Finkelshtein, Andrey</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agmon, Noga</au><au>Benusovich, Shimon</au><au>Finkelshtein, Andrey</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Detecting Fraudulent User Flows</title><date>2024-12-19</date><risdate>2024</risdate><abstract>Mechanisms are provided for detecting fraudulent user flows associated with a website. User flow data, representing an interaction by a user with content of a website, is received and converted to a vector representation that represents a time series transition from one portion of website content to another of the website. The vector representation is input to a trained sequential machine learning computer model which generates a classification of the vector representation. A determination as to whether or not the user flow data represents a fraudulent user flow is made based on the classification. An output is generated that indicates whether or not the user flow is a fraudulent user flow based on the detection.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024422183A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Detecting Fraudulent User Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Agmon,%20Noga&rft.date=2024-12-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024422183A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true