PRE-PROCESSING FOR DEEP NEURAL NETWORK COMPILATION USING GRAPH NEURAL NETWORKS

A processor-implemented method of pre-processing for deep neural network compilation comprising receiving a representation of an artificial neural network (ANN) model. The ANN includes multiple nodes coupled by edges. Position information is determined for each node of the ANN. An operator embedding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BHAMIDIPATI, Anusha V.S, UPRETI, Himanshu, GATTUPALLI, Venkata Subba Dheeraj, BISWAS, Prasanna Ashish, GUPTA, Anuj, SHARMA, Piyush, BADDI, Vinayak Narayan, SHARMA, Mohit
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BHAMIDIPATI, Anusha V.S
UPRETI, Himanshu
GATTUPALLI, Venkata Subba Dheeraj
BISWAS, Prasanna Ashish
GUPTA, Anuj
SHARMA, Piyush
BADDI, Vinayak Narayan
SHARMA, Mohit
description A processor-implemented method of pre-processing for deep neural network compilation comprising receiving a representation of an artificial neural network (ANN) model. The ANN includes multiple nodes coupled by edges. Position information is determined for each node of the ANN. An operator embedding is generated to represent operators of the ANN model in an embedding space based on the position information. A graph neural network (GNN) processes the operator embedding to generate a graph embedding corresponding to the ANN model according to a learned distance metric and based on the position information. The GNN determines a set of hyperparameters for the ANN model based on the graph embedding.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024412035A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024412035A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024412035A13</originalsourceid><addsrcrecordid>eNrjZPALCHLVDQjyd3YNDvb0c1dw8w9ScHF1DVDwcw0NcvQBUiHh_kHeCs7-vgGePo4hnv5-CqFgle5BjgEeaMqCeRhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRiYmhkYGxqaOhMXGqAPkzL7k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PRE-PROCESSING FOR DEEP NEURAL NETWORK COMPILATION USING GRAPH NEURAL NETWORKS</title><source>esp@cenet</source><creator>BHAMIDIPATI, Anusha V.S ; UPRETI, Himanshu ; GATTUPALLI, Venkata Subba Dheeraj ; BISWAS, Prasanna Ashish ; GUPTA, Anuj ; SHARMA, Piyush ; BADDI, Vinayak Narayan ; SHARMA, Mohit</creator><creatorcontrib>BHAMIDIPATI, Anusha V.S ; UPRETI, Himanshu ; GATTUPALLI, Venkata Subba Dheeraj ; BISWAS, Prasanna Ashish ; GUPTA, Anuj ; SHARMA, Piyush ; BADDI, Vinayak Narayan ; SHARMA, Mohit</creatorcontrib><description>A processor-implemented method of pre-processing for deep neural network compilation comprising receiving a representation of an artificial neural network (ANN) model. The ANN includes multiple nodes coupled by edges. Position information is determined for each node of the ANN. An operator embedding is generated to represent operators of the ANN model in an embedding space based on the position information. A graph neural network (GNN) processes the operator embedding to generate a graph embedding corresponding to the ANN model according to a learned distance metric and based on the position information. The GNN determines a set of hyperparameters for the ANN model based on the graph embedding.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241212&amp;DB=EPODOC&amp;CC=US&amp;NR=2024412035A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241212&amp;DB=EPODOC&amp;CC=US&amp;NR=2024412035A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BHAMIDIPATI, Anusha V.S</creatorcontrib><creatorcontrib>UPRETI, Himanshu</creatorcontrib><creatorcontrib>GATTUPALLI, Venkata Subba Dheeraj</creatorcontrib><creatorcontrib>BISWAS, Prasanna Ashish</creatorcontrib><creatorcontrib>GUPTA, Anuj</creatorcontrib><creatorcontrib>SHARMA, Piyush</creatorcontrib><creatorcontrib>BADDI, Vinayak Narayan</creatorcontrib><creatorcontrib>SHARMA, Mohit</creatorcontrib><title>PRE-PROCESSING FOR DEEP NEURAL NETWORK COMPILATION USING GRAPH NEURAL NETWORKS</title><description>A processor-implemented method of pre-processing for deep neural network compilation comprising receiving a representation of an artificial neural network (ANN) model. The ANN includes multiple nodes coupled by edges. Position information is determined for each node of the ANN. An operator embedding is generated to represent operators of the ANN model in an embedding space based on the position information. A graph neural network (GNN) processes the operator embedding to generate a graph embedding corresponding to the ANN model according to a learned distance metric and based on the position information. The GNN determines a set of hyperparameters for the ANN model based on the graph embedding.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPALCHLVDQjyd3YNDvb0c1dw8w9ScHF1DVDwcw0NcvQBUiHh_kHeCs7-vgGePo4hnv5-CqFgle5BjgEeaMqCeRhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRiYmhkYGxqaOhMXGqAPkzL7k</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>BHAMIDIPATI, Anusha V.S</creator><creator>UPRETI, Himanshu</creator><creator>GATTUPALLI, Venkata Subba Dheeraj</creator><creator>BISWAS, Prasanna Ashish</creator><creator>GUPTA, Anuj</creator><creator>SHARMA, Piyush</creator><creator>BADDI, Vinayak Narayan</creator><creator>SHARMA, Mohit</creator><scope>EVB</scope></search><sort><creationdate>20241212</creationdate><title>PRE-PROCESSING FOR DEEP NEURAL NETWORK COMPILATION USING GRAPH NEURAL NETWORKS</title><author>BHAMIDIPATI, Anusha V.S ; UPRETI, Himanshu ; GATTUPALLI, Venkata Subba Dheeraj ; BISWAS, Prasanna Ashish ; GUPTA, Anuj ; SHARMA, Piyush ; BADDI, Vinayak Narayan ; SHARMA, Mohit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024412035A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>BHAMIDIPATI, Anusha V.S</creatorcontrib><creatorcontrib>UPRETI, Himanshu</creatorcontrib><creatorcontrib>GATTUPALLI, Venkata Subba Dheeraj</creatorcontrib><creatorcontrib>BISWAS, Prasanna Ashish</creatorcontrib><creatorcontrib>GUPTA, Anuj</creatorcontrib><creatorcontrib>SHARMA, Piyush</creatorcontrib><creatorcontrib>BADDI, Vinayak Narayan</creatorcontrib><creatorcontrib>SHARMA, Mohit</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BHAMIDIPATI, Anusha V.S</au><au>UPRETI, Himanshu</au><au>GATTUPALLI, Venkata Subba Dheeraj</au><au>BISWAS, Prasanna Ashish</au><au>GUPTA, Anuj</au><au>SHARMA, Piyush</au><au>BADDI, Vinayak Narayan</au><au>SHARMA, Mohit</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PRE-PROCESSING FOR DEEP NEURAL NETWORK COMPILATION USING GRAPH NEURAL NETWORKS</title><date>2024-12-12</date><risdate>2024</risdate><abstract>A processor-implemented method of pre-processing for deep neural network compilation comprising receiving a representation of an artificial neural network (ANN) model. The ANN includes multiple nodes coupled by edges. Position information is determined for each node of the ANN. An operator embedding is generated to represent operators of the ANN model in an embedding space based on the position information. A graph neural network (GNN) processes the operator embedding to generate a graph embedding corresponding to the ANN model according to a learned distance metric and based on the position information. The GNN determines a set of hyperparameters for the ANN model based on the graph embedding.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024412035A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title PRE-PROCESSING FOR DEEP NEURAL NETWORK COMPILATION USING GRAPH NEURAL NETWORKS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BHAMIDIPATI,%20Anusha%20V.S&rft.date=2024-12-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024412035A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true