PERFORMING DYNAMIC SPARSE COMPUTATION ON DENSE COMPUTATION-EFFICIENT COMPUTING DEVICES
Embodiments of the present disclosure include techniques processing dynamically sparse neural networks as dense computations. A permutation is performed to translate an input tensor from a sparse format into a dense format. Once in a dense format, dense computation can be performed to generate outpu...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YANG, Mao ZHENG, Ningxin JIANG, Huiqiang ZHOU, Lidong QIU, Lili MA, Lingxiao HAN, Zhenhua ZHANG, Quanlu YANG, Fan YANG, Yuqing |
description | Embodiments of the present disclosure include techniques processing dynamically sparse neural networks as dense computations. A permutation is performed to translate an input tensor from a sparse format into a dense format. Once in a dense format, dense computation can be performed to generate output data that is also in the dense format. A reverse permutation may then be performed to translate the output data back into the sparse format. An analysis of the operator is performed prior to runtime to determine the one or more dimensions of the tensor expression associated with the operator that are permutation invariant. The permutation may permutate the input tensor across dimensions that are permutation invariant. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024403618A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024403618A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024403618A13</originalsourceid><addsrcrecordid>eNrjZAgLcA1y8w_y9fRzV3CJ9HP09XRWCA5wDAp2VXD29w0IDXEM8fT3UwAiF1c_VEFdVzc3T2dPV78QqCjYDNcwT2fXYB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGJiYGxmaOFoaEycKgCY6TIe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PERFORMING DYNAMIC SPARSE COMPUTATION ON DENSE COMPUTATION-EFFICIENT COMPUTING DEVICES</title><source>esp@cenet</source><creator>YANG, Mao ; ZHENG, Ningxin ; JIANG, Huiqiang ; ZHOU, Lidong ; QIU, Lili ; MA, Lingxiao ; HAN, Zhenhua ; ZHANG, Quanlu ; YANG, Fan ; YANG, Yuqing</creator><creatorcontrib>YANG, Mao ; ZHENG, Ningxin ; JIANG, Huiqiang ; ZHOU, Lidong ; QIU, Lili ; MA, Lingxiao ; HAN, Zhenhua ; ZHANG, Quanlu ; YANG, Fan ; YANG, Yuqing</creatorcontrib><description>Embodiments of the present disclosure include techniques processing dynamically sparse neural networks as dense computations. A permutation is performed to translate an input tensor from a sparse format into a dense format. Once in a dense format, dense computation can be performed to generate output data that is also in the dense format. A reverse permutation may then be performed to translate the output data back into the sparse format. An analysis of the operator is performed prior to runtime to determine the one or more dimensions of the tensor expression associated with the operator that are permutation invariant. The permutation may permutate the input tensor across dimensions that are permutation invariant.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241205&DB=EPODOC&CC=US&NR=2024403618A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241205&DB=EPODOC&CC=US&NR=2024403618A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG, Mao</creatorcontrib><creatorcontrib>ZHENG, Ningxin</creatorcontrib><creatorcontrib>JIANG, Huiqiang</creatorcontrib><creatorcontrib>ZHOU, Lidong</creatorcontrib><creatorcontrib>QIU, Lili</creatorcontrib><creatorcontrib>MA, Lingxiao</creatorcontrib><creatorcontrib>HAN, Zhenhua</creatorcontrib><creatorcontrib>ZHANG, Quanlu</creatorcontrib><creatorcontrib>YANG, Fan</creatorcontrib><creatorcontrib>YANG, Yuqing</creatorcontrib><title>PERFORMING DYNAMIC SPARSE COMPUTATION ON DENSE COMPUTATION-EFFICIENT COMPUTING DEVICES</title><description>Embodiments of the present disclosure include techniques processing dynamically sparse neural networks as dense computations. A permutation is performed to translate an input tensor from a sparse format into a dense format. Once in a dense format, dense computation can be performed to generate output data that is also in the dense format. A reverse permutation may then be performed to translate the output data back into the sparse format. An analysis of the operator is performed prior to runtime to determine the one or more dimensions of the tensor expression associated with the operator that are permutation invariant. The permutation may permutate the input tensor across dimensions that are permutation invariant.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAgLcA1y8w_y9fRzV3CJ9HP09XRWCA5wDAp2VXD29w0IDXEM8fT3UwAiF1c_VEFdVzc3T2dPV78QqCjYDNcwT2fXYB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGJiYGxmaOFoaEycKgCY6TIe</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>YANG, Mao</creator><creator>ZHENG, Ningxin</creator><creator>JIANG, Huiqiang</creator><creator>ZHOU, Lidong</creator><creator>QIU, Lili</creator><creator>MA, Lingxiao</creator><creator>HAN, Zhenhua</creator><creator>ZHANG, Quanlu</creator><creator>YANG, Fan</creator><creator>YANG, Yuqing</creator><scope>EVB</scope></search><sort><creationdate>20241205</creationdate><title>PERFORMING DYNAMIC SPARSE COMPUTATION ON DENSE COMPUTATION-EFFICIENT COMPUTING DEVICES</title><author>YANG, Mao ; ZHENG, Ningxin ; JIANG, Huiqiang ; ZHOU, Lidong ; QIU, Lili ; MA, Lingxiao ; HAN, Zhenhua ; ZHANG, Quanlu ; YANG, Fan ; YANG, Yuqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024403618A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG, Mao</creatorcontrib><creatorcontrib>ZHENG, Ningxin</creatorcontrib><creatorcontrib>JIANG, Huiqiang</creatorcontrib><creatorcontrib>ZHOU, Lidong</creatorcontrib><creatorcontrib>QIU, Lili</creatorcontrib><creatorcontrib>MA, Lingxiao</creatorcontrib><creatorcontrib>HAN, Zhenhua</creatorcontrib><creatorcontrib>ZHANG, Quanlu</creatorcontrib><creatorcontrib>YANG, Fan</creatorcontrib><creatorcontrib>YANG, Yuqing</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG, Mao</au><au>ZHENG, Ningxin</au><au>JIANG, Huiqiang</au><au>ZHOU, Lidong</au><au>QIU, Lili</au><au>MA, Lingxiao</au><au>HAN, Zhenhua</au><au>ZHANG, Quanlu</au><au>YANG, Fan</au><au>YANG, Yuqing</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PERFORMING DYNAMIC SPARSE COMPUTATION ON DENSE COMPUTATION-EFFICIENT COMPUTING DEVICES</title><date>2024-12-05</date><risdate>2024</risdate><abstract>Embodiments of the present disclosure include techniques processing dynamically sparse neural networks as dense computations. A permutation is performed to translate an input tensor from a sparse format into a dense format. Once in a dense format, dense computation can be performed to generate output data that is also in the dense format. A reverse permutation may then be performed to translate the output data back into the sparse format. An analysis of the operator is performed prior to runtime to determine the one or more dimensions of the tensor expression associated with the operator that are permutation invariant. The permutation may permutate the input tensor across dimensions that are permutation invariant.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024403618A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | PERFORMING DYNAMIC SPARSE COMPUTATION ON DENSE COMPUTATION-EFFICIENT COMPUTING DEVICES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG,%20Mao&rft.date=2024-12-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024403618A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |