AUTOMATING THE PARAMETRIZATION OF MULTI-STAGE ITERATIVE SOURCE SEPARATION WITH PRIORS USING MACHINE-LEARNING

Systems and methods may use machine learning to automate the parameterization process for multi-stage iterative source separation. Seismic signals that are generated by a plurality of sources are received by a plurality of sensors within a field as a blended signal. An automated machine learning mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Manikani, Sunil, Giro, Riccardo Angelo, Zhao, Tao, Bilsby, Phillip James, Pham, Nam, Kumar, Rajiv, Vassallo, Massimiliano, Kamil Amin, Yousif Izzeldin
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Manikani, Sunil
Giro, Riccardo Angelo
Zhao, Tao
Bilsby, Phillip James
Pham, Nam
Kumar, Rajiv
Vassallo, Massimiliano
Kamil Amin, Yousif Izzeldin
description Systems and methods may use machine learning to automate the parameterization process for multi-stage iterative source separation. Seismic signals that are generated by a plurality of sources are received by a plurality of sensors within a field as a blended signal. An automated machine learning model that has been trained on blended and unblended signals determines if the incoming blended signal has a relatively high or low signal to noise ratio and then selects a threshold value based on the detected signal to noise ratio. The blended signal is then separated according to the source of the seismic data. A seismic image based on the separated seismic data is then generated which can then be used to adjust one or more control parameters in a machine or tool within the field.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024402373A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024402373A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024402373A13</originalsourceid><addsrcrecordid>eNqNjMEKwjAQRHvxIOo_LHgO1LbgeSnbJtAkJdkoeClF4qloof4_puIHeBp482a22YSBrUZWpgWWBD061MRO3RKzBmwDOnSshGdsCRSTS8WFwNvg6hS0Lr7qVbGE3inrPAS_HmqspTIkOkJnEthnm8c4LfHwy112bIhrKeL8GuIyj_f4jO8h-CIvqiovynOJp_I_6wMzQDg5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUTOMATING THE PARAMETRIZATION OF MULTI-STAGE ITERATIVE SOURCE SEPARATION WITH PRIORS USING MACHINE-LEARNING</title><source>esp@cenet</source><creator>Manikani, Sunil ; Giro, Riccardo Angelo ; Zhao, Tao ; Bilsby, Phillip James ; Pham, Nam ; Kumar, Rajiv ; Vassallo, Massimiliano ; Kamil Amin, Yousif Izzeldin</creator><creatorcontrib>Manikani, Sunil ; Giro, Riccardo Angelo ; Zhao, Tao ; Bilsby, Phillip James ; Pham, Nam ; Kumar, Rajiv ; Vassallo, Massimiliano ; Kamil Amin, Yousif Izzeldin</creatorcontrib><description>Systems and methods may use machine learning to automate the parameterization process for multi-stage iterative source separation. Seismic signals that are generated by a plurality of sources are received by a plurality of sensors within a field as a blended signal. An automated machine learning model that has been trained on blended and unblended signals determines if the incoming blended signal has a relatively high or low signal to noise ratio and then selects a threshold value based on the detected signal to noise ratio. The blended signal is then separated according to the source of the seismic data. A seismic image based on the separated seismic data is then generated which can then be used to adjust one or more control parameters in a machine or tool within the field.</description><language>eng</language><subject>DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241205&amp;DB=EPODOC&amp;CC=US&amp;NR=2024402373A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241205&amp;DB=EPODOC&amp;CC=US&amp;NR=2024402373A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Manikani, Sunil</creatorcontrib><creatorcontrib>Giro, Riccardo Angelo</creatorcontrib><creatorcontrib>Zhao, Tao</creatorcontrib><creatorcontrib>Bilsby, Phillip James</creatorcontrib><creatorcontrib>Pham, Nam</creatorcontrib><creatorcontrib>Kumar, Rajiv</creatorcontrib><creatorcontrib>Vassallo, Massimiliano</creatorcontrib><creatorcontrib>Kamil Amin, Yousif Izzeldin</creatorcontrib><title>AUTOMATING THE PARAMETRIZATION OF MULTI-STAGE ITERATIVE SOURCE SEPARATION WITH PRIORS USING MACHINE-LEARNING</title><description>Systems and methods may use machine learning to automate the parameterization process for multi-stage iterative source separation. Seismic signals that are generated by a plurality of sources are received by a plurality of sensors within a field as a blended signal. An automated machine learning model that has been trained on blended and unblended signals determines if the incoming blended signal has a relatively high or low signal to noise ratio and then selects a threshold value based on the detected signal to noise ratio. The blended signal is then separated according to the source of the seismic data. A seismic image based on the separated seismic data is then generated which can then be used to adjust one or more control parameters in a machine or tool within the field.</description><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjMEKwjAQRHvxIOo_LHgO1LbgeSnbJtAkJdkoeClF4qloof4_puIHeBp482a22YSBrUZWpgWWBD061MRO3RKzBmwDOnSshGdsCRSTS8WFwNvg6hS0Lr7qVbGE3inrPAS_HmqspTIkOkJnEthnm8c4LfHwy112bIhrKeL8GuIyj_f4jO8h-CIvqiovynOJp_I_6wMzQDg5</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Manikani, Sunil</creator><creator>Giro, Riccardo Angelo</creator><creator>Zhao, Tao</creator><creator>Bilsby, Phillip James</creator><creator>Pham, Nam</creator><creator>Kumar, Rajiv</creator><creator>Vassallo, Massimiliano</creator><creator>Kamil Amin, Yousif Izzeldin</creator><scope>EVB</scope></search><sort><creationdate>20241205</creationdate><title>AUTOMATING THE PARAMETRIZATION OF MULTI-STAGE ITERATIVE SOURCE SEPARATION WITH PRIORS USING MACHINE-LEARNING</title><author>Manikani, Sunil ; Giro, Riccardo Angelo ; Zhao, Tao ; Bilsby, Phillip James ; Pham, Nam ; Kumar, Rajiv ; Vassallo, Massimiliano ; Kamil Amin, Yousif Izzeldin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024402373A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Manikani, Sunil</creatorcontrib><creatorcontrib>Giro, Riccardo Angelo</creatorcontrib><creatorcontrib>Zhao, Tao</creatorcontrib><creatorcontrib>Bilsby, Phillip James</creatorcontrib><creatorcontrib>Pham, Nam</creatorcontrib><creatorcontrib>Kumar, Rajiv</creatorcontrib><creatorcontrib>Vassallo, Massimiliano</creatorcontrib><creatorcontrib>Kamil Amin, Yousif Izzeldin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Manikani, Sunil</au><au>Giro, Riccardo Angelo</au><au>Zhao, Tao</au><au>Bilsby, Phillip James</au><au>Pham, Nam</au><au>Kumar, Rajiv</au><au>Vassallo, Massimiliano</au><au>Kamil Amin, Yousif Izzeldin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUTOMATING THE PARAMETRIZATION OF MULTI-STAGE ITERATIVE SOURCE SEPARATION WITH PRIORS USING MACHINE-LEARNING</title><date>2024-12-05</date><risdate>2024</risdate><abstract>Systems and methods may use machine learning to automate the parameterization process for multi-stage iterative source separation. Seismic signals that are generated by a plurality of sources are received by a plurality of sensors within a field as a blended signal. An automated machine learning model that has been trained on blended and unblended signals determines if the incoming blended signal has a relatively high or low signal to noise ratio and then selects a threshold value based on the detected signal to noise ratio. The blended signal is then separated according to the source of the seismic data. A seismic image based on the separated seismic data is then generated which can then be used to adjust one or more control parameters in a machine or tool within the field.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024402373A1
source esp@cenet
subjects DETECTING MASSES OR OBJECTS
GEOPHYSICS
GRAVITATIONAL MEASUREMENTS
MEASURING
PHYSICS
TESTING
title AUTOMATING THE PARAMETRIZATION OF MULTI-STAGE ITERATIVE SOURCE SEPARATION WITH PRIORS USING MACHINE-LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Manikani,%20Sunil&rft.date=2024-12-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024402373A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true