AUTOMATING THE PARAMETRIZATION OF MULTI-STAGE ITERATIVE SOURCE SEPARATION WITH PRIORS USING MACHINE-LEARNING
Systems and methods may use machine learning to automate the parameterization process for multi-stage iterative source separation. Seismic signals that are generated by a plurality of sources are received by a plurality of sensors within a field as a blended signal. An automated machine learning mod...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Manikani, Sunil Giro, Riccardo Angelo Zhao, Tao Bilsby, Phillip James Pham, Nam Kumar, Rajiv Vassallo, Massimiliano Kamil Amin, Yousif Izzeldin |
description | Systems and methods may use machine learning to automate the parameterization process for multi-stage iterative source separation. Seismic signals that are generated by a plurality of sources are received by a plurality of sensors within a field as a blended signal. An automated machine learning model that has been trained on blended and unblended signals determines if the incoming blended signal has a relatively high or low signal to noise ratio and then selects a threshold value based on the detected signal to noise ratio. The blended signal is then separated according to the source of the seismic data. A seismic image based on the separated seismic data is then generated which can then be used to adjust one or more control parameters in a machine or tool within the field. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024402373A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024402373A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024402373A13</originalsourceid><addsrcrecordid>eNqNjMEKwjAQRHvxIOo_LHgO1LbgeSnbJtAkJdkoeClF4qloof4_puIHeBp482a22YSBrUZWpgWWBD061MRO3RKzBmwDOnSshGdsCRSTS8WFwNvg6hS0Lr7qVbGE3inrPAS_HmqspTIkOkJnEthnm8c4LfHwy112bIhrKeL8GuIyj_f4jO8h-CIvqiovynOJp_I_6wMzQDg5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUTOMATING THE PARAMETRIZATION OF MULTI-STAGE ITERATIVE SOURCE SEPARATION WITH PRIORS USING MACHINE-LEARNING</title><source>esp@cenet</source><creator>Manikani, Sunil ; Giro, Riccardo Angelo ; Zhao, Tao ; Bilsby, Phillip James ; Pham, Nam ; Kumar, Rajiv ; Vassallo, Massimiliano ; Kamil Amin, Yousif Izzeldin</creator><creatorcontrib>Manikani, Sunil ; Giro, Riccardo Angelo ; Zhao, Tao ; Bilsby, Phillip James ; Pham, Nam ; Kumar, Rajiv ; Vassallo, Massimiliano ; Kamil Amin, Yousif Izzeldin</creatorcontrib><description>Systems and methods may use machine learning to automate the parameterization process for multi-stage iterative source separation. Seismic signals that are generated by a plurality of sources are received by a plurality of sensors within a field as a blended signal. An automated machine learning model that has been trained on blended and unblended signals determines if the incoming blended signal has a relatively high or low signal to noise ratio and then selects a threshold value based on the detected signal to noise ratio. The blended signal is then separated according to the source of the seismic data. A seismic image based on the separated seismic data is then generated which can then be used to adjust one or more control parameters in a machine or tool within the field.</description><language>eng</language><subject>DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241205&DB=EPODOC&CC=US&NR=2024402373A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241205&DB=EPODOC&CC=US&NR=2024402373A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Manikani, Sunil</creatorcontrib><creatorcontrib>Giro, Riccardo Angelo</creatorcontrib><creatorcontrib>Zhao, Tao</creatorcontrib><creatorcontrib>Bilsby, Phillip James</creatorcontrib><creatorcontrib>Pham, Nam</creatorcontrib><creatorcontrib>Kumar, Rajiv</creatorcontrib><creatorcontrib>Vassallo, Massimiliano</creatorcontrib><creatorcontrib>Kamil Amin, Yousif Izzeldin</creatorcontrib><title>AUTOMATING THE PARAMETRIZATION OF MULTI-STAGE ITERATIVE SOURCE SEPARATION WITH PRIORS USING MACHINE-LEARNING</title><description>Systems and methods may use machine learning to automate the parameterization process for multi-stage iterative source separation. Seismic signals that are generated by a plurality of sources are received by a plurality of sensors within a field as a blended signal. An automated machine learning model that has been trained on blended and unblended signals determines if the incoming blended signal has a relatively high or low signal to noise ratio and then selects a threshold value based on the detected signal to noise ratio. The blended signal is then separated according to the source of the seismic data. A seismic image based on the separated seismic data is then generated which can then be used to adjust one or more control parameters in a machine or tool within the field.</description><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjMEKwjAQRHvxIOo_LHgO1LbgeSnbJtAkJdkoeClF4qloof4_puIHeBp482a22YSBrUZWpgWWBD061MRO3RKzBmwDOnSshGdsCRSTS8WFwNvg6hS0Lr7qVbGE3inrPAS_HmqspTIkOkJnEthnm8c4LfHwy112bIhrKeL8GuIyj_f4jO8h-CIvqiovynOJp_I_6wMzQDg5</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Manikani, Sunil</creator><creator>Giro, Riccardo Angelo</creator><creator>Zhao, Tao</creator><creator>Bilsby, Phillip James</creator><creator>Pham, Nam</creator><creator>Kumar, Rajiv</creator><creator>Vassallo, Massimiliano</creator><creator>Kamil Amin, Yousif Izzeldin</creator><scope>EVB</scope></search><sort><creationdate>20241205</creationdate><title>AUTOMATING THE PARAMETRIZATION OF MULTI-STAGE ITERATIVE SOURCE SEPARATION WITH PRIORS USING MACHINE-LEARNING</title><author>Manikani, Sunil ; Giro, Riccardo Angelo ; Zhao, Tao ; Bilsby, Phillip James ; Pham, Nam ; Kumar, Rajiv ; Vassallo, Massimiliano ; Kamil Amin, Yousif Izzeldin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024402373A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Manikani, Sunil</creatorcontrib><creatorcontrib>Giro, Riccardo Angelo</creatorcontrib><creatorcontrib>Zhao, Tao</creatorcontrib><creatorcontrib>Bilsby, Phillip James</creatorcontrib><creatorcontrib>Pham, Nam</creatorcontrib><creatorcontrib>Kumar, Rajiv</creatorcontrib><creatorcontrib>Vassallo, Massimiliano</creatorcontrib><creatorcontrib>Kamil Amin, Yousif Izzeldin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Manikani, Sunil</au><au>Giro, Riccardo Angelo</au><au>Zhao, Tao</au><au>Bilsby, Phillip James</au><au>Pham, Nam</au><au>Kumar, Rajiv</au><au>Vassallo, Massimiliano</au><au>Kamil Amin, Yousif Izzeldin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUTOMATING THE PARAMETRIZATION OF MULTI-STAGE ITERATIVE SOURCE SEPARATION WITH PRIORS USING MACHINE-LEARNING</title><date>2024-12-05</date><risdate>2024</risdate><abstract>Systems and methods may use machine learning to automate the parameterization process for multi-stage iterative source separation. Seismic signals that are generated by a plurality of sources are received by a plurality of sensors within a field as a blended signal. An automated machine learning model that has been trained on blended and unblended signals determines if the incoming blended signal has a relatively high or low signal to noise ratio and then selects a threshold value based on the detected signal to noise ratio. The blended signal is then separated according to the source of the seismic data. A seismic image based on the separated seismic data is then generated which can then be used to adjust one or more control parameters in a machine or tool within the field.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024402373A1 |
source | esp@cenet |
subjects | DETECTING MASSES OR OBJECTS GEOPHYSICS GRAVITATIONAL MEASUREMENTS MEASURING PHYSICS TESTING |
title | AUTOMATING THE PARAMETRIZATION OF MULTI-STAGE ITERATIVE SOURCE SEPARATION WITH PRIORS USING MACHINE-LEARNING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Manikani,%20Sunil&rft.date=2024-12-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024402373A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |