TRAJECTORY CLUSTER MODEL FOR LEARNING TRAJECTORY PATTERNS IN VIDEO DATA

Techniques are disclosed for analyzing and learning behavior in an acquired stream of video frames. In one embodiment, a trajectory analyzer clusters trajectories of objects depicted in video frames and builds a trajectory model including the trajectory clusters, a prior probability of assigning a t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YANG, Tao, SEOW, Ming-Jung, COBB, Wesley Kenneth, XU, Gang
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YANG, Tao
SEOW, Ming-Jung
COBB, Wesley Kenneth
XU, Gang
description Techniques are disclosed for analyzing and learning behavior in an acquired stream of video frames. In one embodiment, a trajectory analyzer clusters trajectories of objects depicted in video frames and builds a trajectory model including the trajectory clusters, a prior probability of assigning a trajectory to each cluster, and an intra-cluster probability distribution indicating the probability that a trajectory mapping to each cluster is least various distances away from the cluster. Given a new trajectory, a score indicating how unusual the trajectory is may be computed based on the product of the probability of the trajectory mapping to a particular cluster and the intra-cluster probability of the trajectory being a computed distance from the cluster. The distance used to match the trajectory to the cluster and determine intra-cluster probability is computed using a parallel Needleman-Wunsch algorithm, with cells in antidiagonals of a matrix and connected sub-matrices being computed in parallel.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024394894A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024394894A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024394894A13</originalsourceid><addsrcrecordid>eNrjZHAPCXL0cnUO8Q-KVHD2CQ0OcQ1S8PV3cfVRcPMPUvBxdQzy8_RzV0BSFeAYAlTkF6zg6acQ5uni6q_g4hjiyMPAmpaYU5zKC6W5GZTdXEOcPXRTC_LjU4sLEpNT81JL4kODjQyMTIwtTSwsTRwNjYlTBQCwnS3N</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TRAJECTORY CLUSTER MODEL FOR LEARNING TRAJECTORY PATTERNS IN VIDEO DATA</title><source>esp@cenet</source><creator>YANG, Tao ; SEOW, Ming-Jung ; COBB, Wesley Kenneth ; XU, Gang</creator><creatorcontrib>YANG, Tao ; SEOW, Ming-Jung ; COBB, Wesley Kenneth ; XU, Gang</creatorcontrib><description>Techniques are disclosed for analyzing and learning behavior in an acquired stream of video frames. In one embodiment, a trajectory analyzer clusters trajectories of objects depicted in video frames and builds a trajectory model including the trajectory clusters, a prior probability of assigning a trajectory to each cluster, and an intra-cluster probability distribution indicating the probability that a trajectory mapping to each cluster is least various distances away from the cluster. Given a new trajectory, a score indicating how unusual the trajectory is may be computed based on the product of the probability of the trajectory mapping to a particular cluster and the intra-cluster probability of the trajectory being a computed distance from the cluster. The distance used to match the trajectory to the cluster and determine intra-cluster probability is computed using a parallel Needleman-Wunsch algorithm, with cells in antidiagonals of a matrix and connected sub-matrices being computed in parallel.</description><language>eng</language><subject>ALARM SYSTEMS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; ORDER TELEGRAPHS ; PHYSICS ; SIGNALLING ; SIGNALLING OR CALLING SYSTEMS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241128&amp;DB=EPODOC&amp;CC=US&amp;NR=2024394894A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241128&amp;DB=EPODOC&amp;CC=US&amp;NR=2024394894A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG, Tao</creatorcontrib><creatorcontrib>SEOW, Ming-Jung</creatorcontrib><creatorcontrib>COBB, Wesley Kenneth</creatorcontrib><creatorcontrib>XU, Gang</creatorcontrib><title>TRAJECTORY CLUSTER MODEL FOR LEARNING TRAJECTORY PATTERNS IN VIDEO DATA</title><description>Techniques are disclosed for analyzing and learning behavior in an acquired stream of video frames. In one embodiment, a trajectory analyzer clusters trajectories of objects depicted in video frames and builds a trajectory model including the trajectory clusters, a prior probability of assigning a trajectory to each cluster, and an intra-cluster probability distribution indicating the probability that a trajectory mapping to each cluster is least various distances away from the cluster. Given a new trajectory, a score indicating how unusual the trajectory is may be computed based on the product of the probability of the trajectory mapping to a particular cluster and the intra-cluster probability of the trajectory being a computed distance from the cluster. The distance used to match the trajectory to the cluster and determine intra-cluster probability is computed using a parallel Needleman-Wunsch algorithm, with cells in antidiagonals of a matrix and connected sub-matrices being computed in parallel.</description><subject>ALARM SYSTEMS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>ORDER TELEGRAPHS</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>SIGNALLING OR CALLING SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAPCXL0cnUO8Q-KVHD2CQ0OcQ1S8PV3cfVRcPMPUvBxdQzy8_RzV0BSFeAYAlTkF6zg6acQ5uni6q_g4hjiyMPAmpaYU5zKC6W5GZTdXEOcPXRTC_LjU4sLEpNT81JL4kODjQyMTIwtTSwsTRwNjYlTBQCwnS3N</recordid><startdate>20241128</startdate><enddate>20241128</enddate><creator>YANG, Tao</creator><creator>SEOW, Ming-Jung</creator><creator>COBB, Wesley Kenneth</creator><creator>XU, Gang</creator><scope>EVB</scope></search><sort><creationdate>20241128</creationdate><title>TRAJECTORY CLUSTER MODEL FOR LEARNING TRAJECTORY PATTERNS IN VIDEO DATA</title><author>YANG, Tao ; SEOW, Ming-Jung ; COBB, Wesley Kenneth ; XU, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024394894A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ALARM SYSTEMS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>ORDER TELEGRAPHS</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>SIGNALLING OR CALLING SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG, Tao</creatorcontrib><creatorcontrib>SEOW, Ming-Jung</creatorcontrib><creatorcontrib>COBB, Wesley Kenneth</creatorcontrib><creatorcontrib>XU, Gang</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG, Tao</au><au>SEOW, Ming-Jung</au><au>COBB, Wesley Kenneth</au><au>XU, Gang</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TRAJECTORY CLUSTER MODEL FOR LEARNING TRAJECTORY PATTERNS IN VIDEO DATA</title><date>2024-11-28</date><risdate>2024</risdate><abstract>Techniques are disclosed for analyzing and learning behavior in an acquired stream of video frames. In one embodiment, a trajectory analyzer clusters trajectories of objects depicted in video frames and builds a trajectory model including the trajectory clusters, a prior probability of assigning a trajectory to each cluster, and an intra-cluster probability distribution indicating the probability that a trajectory mapping to each cluster is least various distances away from the cluster. Given a new trajectory, a score indicating how unusual the trajectory is may be computed based on the product of the probability of the trajectory mapping to a particular cluster and the intra-cluster probability of the trajectory being a computed distance from the cluster. The distance used to match the trajectory to the cluster and determine intra-cluster probability is computed using a parallel Needleman-Wunsch algorithm, with cells in antidiagonals of a matrix and connected sub-matrices being computed in parallel.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024394894A1
source esp@cenet
subjects ALARM SYSTEMS
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
ORDER TELEGRAPHS
PHYSICS
SIGNALLING
SIGNALLING OR CALLING SYSTEMS
title TRAJECTORY CLUSTER MODEL FOR LEARNING TRAJECTORY PATTERNS IN VIDEO DATA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG,%20Tao&rft.date=2024-11-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024394894A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true