TRAJECTORY CLUSTER MODEL FOR LEARNING TRAJECTORY PATTERNS IN VIDEO DATA
Techniques are disclosed for analyzing and learning behavior in an acquired stream of video frames. In one embodiment, a trajectory analyzer clusters trajectories of objects depicted in video frames and builds a trajectory model including the trajectory clusters, a prior probability of assigning a t...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YANG, Tao SEOW, Ming-Jung COBB, Wesley Kenneth XU, Gang |
description | Techniques are disclosed for analyzing and learning behavior in an acquired stream of video frames. In one embodiment, a trajectory analyzer clusters trajectories of objects depicted in video frames and builds a trajectory model including the trajectory clusters, a prior probability of assigning a trajectory to each cluster, and an intra-cluster probability distribution indicating the probability that a trajectory mapping to each cluster is least various distances away from the cluster. Given a new trajectory, a score indicating how unusual the trajectory is may be computed based on the product of the probability of the trajectory mapping to a particular cluster and the intra-cluster probability of the trajectory being a computed distance from the cluster. The distance used to match the trajectory to the cluster and determine intra-cluster probability is computed using a parallel Needleman-Wunsch algorithm, with cells in antidiagonals of a matrix and connected sub-matrices being computed in parallel. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024394894A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024394894A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024394894A13</originalsourceid><addsrcrecordid>eNrjZHAPCXL0cnUO8Q-KVHD2CQ0OcQ1S8PV3cfVRcPMPUvBxdQzy8_RzV0BSFeAYAlTkF6zg6acQ5uni6q_g4hjiyMPAmpaYU5zKC6W5GZTdXEOcPXRTC_LjU4sLEpNT81JL4kODjQyMTIwtTSwsTRwNjYlTBQCwnS3N</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TRAJECTORY CLUSTER MODEL FOR LEARNING TRAJECTORY PATTERNS IN VIDEO DATA</title><source>esp@cenet</source><creator>YANG, Tao ; SEOW, Ming-Jung ; COBB, Wesley Kenneth ; XU, Gang</creator><creatorcontrib>YANG, Tao ; SEOW, Ming-Jung ; COBB, Wesley Kenneth ; XU, Gang</creatorcontrib><description>Techniques are disclosed for analyzing and learning behavior in an acquired stream of video frames. In one embodiment, a trajectory analyzer clusters trajectories of objects depicted in video frames and builds a trajectory model including the trajectory clusters, a prior probability of assigning a trajectory to each cluster, and an intra-cluster probability distribution indicating the probability that a trajectory mapping to each cluster is least various distances away from the cluster. Given a new trajectory, a score indicating how unusual the trajectory is may be computed based on the product of the probability of the trajectory mapping to a particular cluster and the intra-cluster probability of the trajectory being a computed distance from the cluster. The distance used to match the trajectory to the cluster and determine intra-cluster probability is computed using a parallel Needleman-Wunsch algorithm, with cells in antidiagonals of a matrix and connected sub-matrices being computed in parallel.</description><language>eng</language><subject>ALARM SYSTEMS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; ORDER TELEGRAPHS ; PHYSICS ; SIGNALLING ; SIGNALLING OR CALLING SYSTEMS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241128&DB=EPODOC&CC=US&NR=2024394894A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241128&DB=EPODOC&CC=US&NR=2024394894A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG, Tao</creatorcontrib><creatorcontrib>SEOW, Ming-Jung</creatorcontrib><creatorcontrib>COBB, Wesley Kenneth</creatorcontrib><creatorcontrib>XU, Gang</creatorcontrib><title>TRAJECTORY CLUSTER MODEL FOR LEARNING TRAJECTORY PATTERNS IN VIDEO DATA</title><description>Techniques are disclosed for analyzing and learning behavior in an acquired stream of video frames. In one embodiment, a trajectory analyzer clusters trajectories of objects depicted in video frames and builds a trajectory model including the trajectory clusters, a prior probability of assigning a trajectory to each cluster, and an intra-cluster probability distribution indicating the probability that a trajectory mapping to each cluster is least various distances away from the cluster. Given a new trajectory, a score indicating how unusual the trajectory is may be computed based on the product of the probability of the trajectory mapping to a particular cluster and the intra-cluster probability of the trajectory being a computed distance from the cluster. The distance used to match the trajectory to the cluster and determine intra-cluster probability is computed using a parallel Needleman-Wunsch algorithm, with cells in antidiagonals of a matrix and connected sub-matrices being computed in parallel.</description><subject>ALARM SYSTEMS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>ORDER TELEGRAPHS</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>SIGNALLING OR CALLING SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAPCXL0cnUO8Q-KVHD2CQ0OcQ1S8PV3cfVRcPMPUvBxdQzy8_RzV0BSFeAYAlTkF6zg6acQ5uni6q_g4hjiyMPAmpaYU5zKC6W5GZTdXEOcPXRTC_LjU4sLEpNT81JL4kODjQyMTIwtTSwsTRwNjYlTBQCwnS3N</recordid><startdate>20241128</startdate><enddate>20241128</enddate><creator>YANG, Tao</creator><creator>SEOW, Ming-Jung</creator><creator>COBB, Wesley Kenneth</creator><creator>XU, Gang</creator><scope>EVB</scope></search><sort><creationdate>20241128</creationdate><title>TRAJECTORY CLUSTER MODEL FOR LEARNING TRAJECTORY PATTERNS IN VIDEO DATA</title><author>YANG, Tao ; SEOW, Ming-Jung ; COBB, Wesley Kenneth ; XU, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024394894A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ALARM SYSTEMS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>ORDER TELEGRAPHS</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>SIGNALLING OR CALLING SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG, Tao</creatorcontrib><creatorcontrib>SEOW, Ming-Jung</creatorcontrib><creatorcontrib>COBB, Wesley Kenneth</creatorcontrib><creatorcontrib>XU, Gang</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG, Tao</au><au>SEOW, Ming-Jung</au><au>COBB, Wesley Kenneth</au><au>XU, Gang</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TRAJECTORY CLUSTER MODEL FOR LEARNING TRAJECTORY PATTERNS IN VIDEO DATA</title><date>2024-11-28</date><risdate>2024</risdate><abstract>Techniques are disclosed for analyzing and learning behavior in an acquired stream of video frames. In one embodiment, a trajectory analyzer clusters trajectories of objects depicted in video frames and builds a trajectory model including the trajectory clusters, a prior probability of assigning a trajectory to each cluster, and an intra-cluster probability distribution indicating the probability that a trajectory mapping to each cluster is least various distances away from the cluster. Given a new trajectory, a score indicating how unusual the trajectory is may be computed based on the product of the probability of the trajectory mapping to a particular cluster and the intra-cluster probability of the trajectory being a computed distance from the cluster. The distance used to match the trajectory to the cluster and determine intra-cluster probability is computed using a parallel Needleman-Wunsch algorithm, with cells in antidiagonals of a matrix and connected sub-matrices being computed in parallel.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024394894A1 |
source | esp@cenet |
subjects | ALARM SYSTEMS CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ORDER TELEGRAPHS PHYSICS SIGNALLING SIGNALLING OR CALLING SYSTEMS |
title | TRAJECTORY CLUSTER MODEL FOR LEARNING TRAJECTORY PATTERNS IN VIDEO DATA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG,%20Tao&rft.date=2024-11-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024394894A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |