FLOW FIELD IDENTIFICATION METHOD OF ARTIFICIAL INTELLIGENCE FISH SIMULATION SYSTEM

A flow field identification method of artificial intelligence fish simulation system uses cluster server parallel sampling to obtain continuous flow field time series information data. After preprocessing the data, the method uses the lateral line perceptron of recurrent neural network or convolutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MA, Qian, ZHANG, Chunze, PENG, Peiyi, DIAO, Wei, HOU, Ji, ZHANG, Zhan, LI, Tao, MI, Jiashan, ZHOU, Qin, XIE, Lingyun
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MA, Qian
ZHANG, Chunze
PENG, Peiyi
DIAO, Wei
HOU, Ji
ZHANG, Zhan
LI, Tao
MI, Jiashan
ZHOU, Qin
XIE, Lingyun
description A flow field identification method of artificial intelligence fish simulation system uses cluster server parallel sampling to obtain continuous flow field time series information data. After preprocessing the data, the method uses the lateral line perceptron of recurrent neural network or convolutional neural network based on long time series to continuously acquire data, train and iterate. Finally, the method can identify the flow field sequence data signal with time series property, wherein, the perceived flow field signals include but are not limited to velocity, pressure and vorticity, and the experimental results are continuously filled into the experimental database, which will have the effect of memory transplantation on the artificial fish and reduce the occurrence of repetitive errors. The method identifies the flow field of an artificial intelligence fish simulation system, which can fully reflect the characteristics of the flow field from the aspects of amplitude, frequency, and wavelength.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024386236A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024386236A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024386236A13</originalsourceid><addsrcrecordid>eNqNi7sKAjEQANNYiPoPC9aCJnLYhmRjFvKAyx5idRwSK9GD8_9R1A-wGhhm5qJ1IZ_AEQYLZDExOTKaKSeIyD5byA50-9GkA1BiDIGOmAy-t-KhUOzC9yjnwhiXYnYdblNd_bgQa4ds_KaOj75O43Cp9_rsuyK3cq8OjVSN3qn_qheWlzCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>FLOW FIELD IDENTIFICATION METHOD OF ARTIFICIAL INTELLIGENCE FISH SIMULATION SYSTEM</title><source>esp@cenet</source><creator>MA, Qian ; ZHANG, Chunze ; PENG, Peiyi ; DIAO, Wei ; HOU, Ji ; ZHANG, Zhan ; LI, Tao ; MI, Jiashan ; ZHOU, Qin ; XIE, Lingyun</creator><creatorcontrib>MA, Qian ; ZHANG, Chunze ; PENG, Peiyi ; DIAO, Wei ; HOU, Ji ; ZHANG, Zhan ; LI, Tao ; MI, Jiashan ; ZHOU, Qin ; XIE, Lingyun</creatorcontrib><description>A flow field identification method of artificial intelligence fish simulation system uses cluster server parallel sampling to obtain continuous flow field time series information data. After preprocessing the data, the method uses the lateral line perceptron of recurrent neural network or convolutional neural network based on long time series to continuously acquire data, train and iterate. Finally, the method can identify the flow field sequence data signal with time series property, wherein, the perceived flow field signals include but are not limited to velocity, pressure and vorticity, and the experimental results are continuously filled into the experimental database, which will have the effect of memory transplantation on the artificial fish and reduce the occurrence of repetitive errors. The method identifies the flow field of an artificial intelligence fish simulation system, which can fully reflect the characteristics of the flow field from the aspects of amplitude, frequency, and wavelength.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241121&amp;DB=EPODOC&amp;CC=US&amp;NR=2024386236A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241121&amp;DB=EPODOC&amp;CC=US&amp;NR=2024386236A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MA, Qian</creatorcontrib><creatorcontrib>ZHANG, Chunze</creatorcontrib><creatorcontrib>PENG, Peiyi</creatorcontrib><creatorcontrib>DIAO, Wei</creatorcontrib><creatorcontrib>HOU, Ji</creatorcontrib><creatorcontrib>ZHANG, Zhan</creatorcontrib><creatorcontrib>LI, Tao</creatorcontrib><creatorcontrib>MI, Jiashan</creatorcontrib><creatorcontrib>ZHOU, Qin</creatorcontrib><creatorcontrib>XIE, Lingyun</creatorcontrib><title>FLOW FIELD IDENTIFICATION METHOD OF ARTIFICIAL INTELLIGENCE FISH SIMULATION SYSTEM</title><description>A flow field identification method of artificial intelligence fish simulation system uses cluster server parallel sampling to obtain continuous flow field time series information data. After preprocessing the data, the method uses the lateral line perceptron of recurrent neural network or convolutional neural network based on long time series to continuously acquire data, train and iterate. Finally, the method can identify the flow field sequence data signal with time series property, wherein, the perceived flow field signals include but are not limited to velocity, pressure and vorticity, and the experimental results are continuously filled into the experimental database, which will have the effect of memory transplantation on the artificial fish and reduce the occurrence of repetitive errors. The method identifies the flow field of an artificial intelligence fish simulation system, which can fully reflect the characteristics of the flow field from the aspects of amplitude, frequency, and wavelength.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7sKAjEQANNYiPoPC9aCJnLYhmRjFvKAyx5idRwSK9GD8_9R1A-wGhhm5qJ1IZ_AEQYLZDExOTKaKSeIyD5byA50-9GkA1BiDIGOmAy-t-KhUOzC9yjnwhiXYnYdblNd_bgQa4ds_KaOj75O43Cp9_rsuyK3cq8OjVSN3qn_qheWlzCw</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>MA, Qian</creator><creator>ZHANG, Chunze</creator><creator>PENG, Peiyi</creator><creator>DIAO, Wei</creator><creator>HOU, Ji</creator><creator>ZHANG, Zhan</creator><creator>LI, Tao</creator><creator>MI, Jiashan</creator><creator>ZHOU, Qin</creator><creator>XIE, Lingyun</creator><scope>EVB</scope></search><sort><creationdate>20241121</creationdate><title>FLOW FIELD IDENTIFICATION METHOD OF ARTIFICIAL INTELLIGENCE FISH SIMULATION SYSTEM</title><author>MA, Qian ; ZHANG, Chunze ; PENG, Peiyi ; DIAO, Wei ; HOU, Ji ; ZHANG, Zhan ; LI, Tao ; MI, Jiashan ; ZHOU, Qin ; XIE, Lingyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024386236A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MA, Qian</creatorcontrib><creatorcontrib>ZHANG, Chunze</creatorcontrib><creatorcontrib>PENG, Peiyi</creatorcontrib><creatorcontrib>DIAO, Wei</creatorcontrib><creatorcontrib>HOU, Ji</creatorcontrib><creatorcontrib>ZHANG, Zhan</creatorcontrib><creatorcontrib>LI, Tao</creatorcontrib><creatorcontrib>MI, Jiashan</creatorcontrib><creatorcontrib>ZHOU, Qin</creatorcontrib><creatorcontrib>XIE, Lingyun</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MA, Qian</au><au>ZHANG, Chunze</au><au>PENG, Peiyi</au><au>DIAO, Wei</au><au>HOU, Ji</au><au>ZHANG, Zhan</au><au>LI, Tao</au><au>MI, Jiashan</au><au>ZHOU, Qin</au><au>XIE, Lingyun</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>FLOW FIELD IDENTIFICATION METHOD OF ARTIFICIAL INTELLIGENCE FISH SIMULATION SYSTEM</title><date>2024-11-21</date><risdate>2024</risdate><abstract>A flow field identification method of artificial intelligence fish simulation system uses cluster server parallel sampling to obtain continuous flow field time series information data. After preprocessing the data, the method uses the lateral line perceptron of recurrent neural network or convolutional neural network based on long time series to continuously acquire data, train and iterate. Finally, the method can identify the flow field sequence data signal with time series property, wherein, the perceived flow field signals include but are not limited to velocity, pressure and vorticity, and the experimental results are continuously filled into the experimental database, which will have the effect of memory transplantation on the artificial fish and reduce the occurrence of repetitive errors. The method identifies the flow field of an artificial intelligence fish simulation system, which can fully reflect the characteristics of the flow field from the aspects of amplitude, frequency, and wavelength.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024386236A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title FLOW FIELD IDENTIFICATION METHOD OF ARTIFICIAL INTELLIGENCE FISH SIMULATION SYSTEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A19%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MA,%20Qian&rft.date=2024-11-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024386236A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true