FLOW FIELD IDENTIFICATION METHOD OF ARTIFICIAL INTELLIGENCE FISH SIMULATION SYSTEM
A flow field identification method of artificial intelligence fish simulation system uses cluster server parallel sampling to obtain continuous flow field time series information data. After preprocessing the data, the method uses the lateral line perceptron of recurrent neural network or convolutio...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MA, Qian ZHANG, Chunze PENG, Peiyi DIAO, Wei HOU, Ji ZHANG, Zhan LI, Tao MI, Jiashan ZHOU, Qin XIE, Lingyun |
description | A flow field identification method of artificial intelligence fish simulation system uses cluster server parallel sampling to obtain continuous flow field time series information data. After preprocessing the data, the method uses the lateral line perceptron of recurrent neural network or convolutional neural network based on long time series to continuously acquire data, train and iterate. Finally, the method can identify the flow field sequence data signal with time series property, wherein, the perceived flow field signals include but are not limited to velocity, pressure and vorticity, and the experimental results are continuously filled into the experimental database, which will have the effect of memory transplantation on the artificial fish and reduce the occurrence of repetitive errors. The method identifies the flow field of an artificial intelligence fish simulation system, which can fully reflect the characteristics of the flow field from the aspects of amplitude, frequency, and wavelength. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024386236A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024386236A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024386236A13</originalsourceid><addsrcrecordid>eNqNi7sKAjEQANNYiPoPC9aCJnLYhmRjFvKAyx5idRwSK9GD8_9R1A-wGhhm5qJ1IZ_AEQYLZDExOTKaKSeIyD5byA50-9GkA1BiDIGOmAy-t-KhUOzC9yjnwhiXYnYdblNd_bgQa4ds_KaOj75O43Cp9_rsuyK3cq8OjVSN3qn_qheWlzCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>FLOW FIELD IDENTIFICATION METHOD OF ARTIFICIAL INTELLIGENCE FISH SIMULATION SYSTEM</title><source>esp@cenet</source><creator>MA, Qian ; ZHANG, Chunze ; PENG, Peiyi ; DIAO, Wei ; HOU, Ji ; ZHANG, Zhan ; LI, Tao ; MI, Jiashan ; ZHOU, Qin ; XIE, Lingyun</creator><creatorcontrib>MA, Qian ; ZHANG, Chunze ; PENG, Peiyi ; DIAO, Wei ; HOU, Ji ; ZHANG, Zhan ; LI, Tao ; MI, Jiashan ; ZHOU, Qin ; XIE, Lingyun</creatorcontrib><description>A flow field identification method of artificial intelligence fish simulation system uses cluster server parallel sampling to obtain continuous flow field time series information data. After preprocessing the data, the method uses the lateral line perceptron of recurrent neural network or convolutional neural network based on long time series to continuously acquire data, train and iterate. Finally, the method can identify the flow field sequence data signal with time series property, wherein, the perceived flow field signals include but are not limited to velocity, pressure and vorticity, and the experimental results are continuously filled into the experimental database, which will have the effect of memory transplantation on the artificial fish and reduce the occurrence of repetitive errors. The method identifies the flow field of an artificial intelligence fish simulation system, which can fully reflect the characteristics of the flow field from the aspects of amplitude, frequency, and wavelength.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241121&DB=EPODOC&CC=US&NR=2024386236A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241121&DB=EPODOC&CC=US&NR=2024386236A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MA, Qian</creatorcontrib><creatorcontrib>ZHANG, Chunze</creatorcontrib><creatorcontrib>PENG, Peiyi</creatorcontrib><creatorcontrib>DIAO, Wei</creatorcontrib><creatorcontrib>HOU, Ji</creatorcontrib><creatorcontrib>ZHANG, Zhan</creatorcontrib><creatorcontrib>LI, Tao</creatorcontrib><creatorcontrib>MI, Jiashan</creatorcontrib><creatorcontrib>ZHOU, Qin</creatorcontrib><creatorcontrib>XIE, Lingyun</creatorcontrib><title>FLOW FIELD IDENTIFICATION METHOD OF ARTIFICIAL INTELLIGENCE FISH SIMULATION SYSTEM</title><description>A flow field identification method of artificial intelligence fish simulation system uses cluster server parallel sampling to obtain continuous flow field time series information data. After preprocessing the data, the method uses the lateral line perceptron of recurrent neural network or convolutional neural network based on long time series to continuously acquire data, train and iterate. Finally, the method can identify the flow field sequence data signal with time series property, wherein, the perceived flow field signals include but are not limited to velocity, pressure and vorticity, and the experimental results are continuously filled into the experimental database, which will have the effect of memory transplantation on the artificial fish and reduce the occurrence of repetitive errors. The method identifies the flow field of an artificial intelligence fish simulation system, which can fully reflect the characteristics of the flow field from the aspects of amplitude, frequency, and wavelength.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7sKAjEQANNYiPoPC9aCJnLYhmRjFvKAyx5idRwSK9GD8_9R1A-wGhhm5qJ1IZ_AEQYLZDExOTKaKSeIyD5byA50-9GkA1BiDIGOmAy-t-KhUOzC9yjnwhiXYnYdblNd_bgQa4ds_KaOj75O43Cp9_rsuyK3cq8OjVSN3qn_qheWlzCw</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>MA, Qian</creator><creator>ZHANG, Chunze</creator><creator>PENG, Peiyi</creator><creator>DIAO, Wei</creator><creator>HOU, Ji</creator><creator>ZHANG, Zhan</creator><creator>LI, Tao</creator><creator>MI, Jiashan</creator><creator>ZHOU, Qin</creator><creator>XIE, Lingyun</creator><scope>EVB</scope></search><sort><creationdate>20241121</creationdate><title>FLOW FIELD IDENTIFICATION METHOD OF ARTIFICIAL INTELLIGENCE FISH SIMULATION SYSTEM</title><author>MA, Qian ; ZHANG, Chunze ; PENG, Peiyi ; DIAO, Wei ; HOU, Ji ; ZHANG, Zhan ; LI, Tao ; MI, Jiashan ; ZHOU, Qin ; XIE, Lingyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024386236A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MA, Qian</creatorcontrib><creatorcontrib>ZHANG, Chunze</creatorcontrib><creatorcontrib>PENG, Peiyi</creatorcontrib><creatorcontrib>DIAO, Wei</creatorcontrib><creatorcontrib>HOU, Ji</creatorcontrib><creatorcontrib>ZHANG, Zhan</creatorcontrib><creatorcontrib>LI, Tao</creatorcontrib><creatorcontrib>MI, Jiashan</creatorcontrib><creatorcontrib>ZHOU, Qin</creatorcontrib><creatorcontrib>XIE, Lingyun</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MA, Qian</au><au>ZHANG, Chunze</au><au>PENG, Peiyi</au><au>DIAO, Wei</au><au>HOU, Ji</au><au>ZHANG, Zhan</au><au>LI, Tao</au><au>MI, Jiashan</au><au>ZHOU, Qin</au><au>XIE, Lingyun</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>FLOW FIELD IDENTIFICATION METHOD OF ARTIFICIAL INTELLIGENCE FISH SIMULATION SYSTEM</title><date>2024-11-21</date><risdate>2024</risdate><abstract>A flow field identification method of artificial intelligence fish simulation system uses cluster server parallel sampling to obtain continuous flow field time series information data. After preprocessing the data, the method uses the lateral line perceptron of recurrent neural network or convolutional neural network based on long time series to continuously acquire data, train and iterate. Finally, the method can identify the flow field sequence data signal with time series property, wherein, the perceived flow field signals include but are not limited to velocity, pressure and vorticity, and the experimental results are continuously filled into the experimental database, which will have the effect of memory transplantation on the artificial fish and reduce the occurrence of repetitive errors. The method identifies the flow field of an artificial intelligence fish simulation system, which can fully reflect the characteristics of the flow field from the aspects of amplitude, frequency, and wavelength.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024386236A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | FLOW FIELD IDENTIFICATION METHOD OF ARTIFICIAL INTELLIGENCE FISH SIMULATION SYSTEM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A19%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MA,%20Qian&rft.date=2024-11-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024386236A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |