METHOD AND PLANT FOR PROVIDING A PRESSURIZED OXYGEN-RICH, GASEOUS AIR PRODUCT

The invention relates to a high-atmospheric-pressure method for producing a pressurized oxygen-rich, gaseous air product. A first partial quantity of the feed air quantity is supplied at a temperature in a first temperature range to a first turbine unit (5), decompressed using same, and fed into a h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: GOLUBEV, Dimitri
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GOLUBEV, Dimitri
description The invention relates to a high-atmospheric-pressure method for producing a pressurized oxygen-rich, gaseous air product. A first partial quantity of the feed air quantity is supplied at a temperature in a first temperature range to a first turbine unit (5), decompressed using same, and fed into a high-pressure column (111). A second partial quantity of the feed air quantity is supplied at a temperature in a second temperature range to a second turbine unit (6), decompressed using same, and fed into a low-pressure column (12). The pressurized, oxygen-rich air product is provided as an internal compression product at 16 to 50 bar, wherein evaporation is effected proceeding from a temperature in a third temperature range. The third temperature range lies above the first and second temperature range, the second temperature range is selected such that a two-phase mixture with a liquid proportion of 5 to 15% forms at the outlet of the second turbine unit (6), the temperature in the first temperature range and the temperature in the second differ from each other by not more than 10 K, and a portion of less than 5% of all air products removed from the air separation plant (100) is removed from the air separation plant in an unevaporated and liquid state. The first turbine unit is braked by a cold compressor (4), the second by a generator (G) or a warm booster. The invention also relates to an air separation plant (100).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024384928A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024384928A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024384928A13</originalsourceid><addsrcrecordid>eNrjZPD1dQ3x8HdRcPRzUQjwcfQLUXDzD1IICPIP83Tx9HNXcASyXYODQ4M8o1xdFPwjIt1d_XSDPJ09dBTcHYNd_UODFRw9wRpcQp1DeBhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRibGFiaWRhaOhMXGqAJulLzY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD AND PLANT FOR PROVIDING A PRESSURIZED OXYGEN-RICH, GASEOUS AIR PRODUCT</title><source>esp@cenet</source><creator>GOLUBEV, Dimitri</creator><creatorcontrib>GOLUBEV, Dimitri</creatorcontrib><description>The invention relates to a high-atmospheric-pressure method for producing a pressurized oxygen-rich, gaseous air product. A first partial quantity of the feed air quantity is supplied at a temperature in a first temperature range to a first turbine unit (5), decompressed using same, and fed into a high-pressure column (111). A second partial quantity of the feed air quantity is supplied at a temperature in a second temperature range to a second turbine unit (6), decompressed using same, and fed into a low-pressure column (12). The pressurized, oxygen-rich air product is provided as an internal compression product at 16 to 50 bar, wherein evaporation is effected proceeding from a temperature in a third temperature range. The third temperature range lies above the first and second temperature range, the second temperature range is selected such that a two-phase mixture with a liquid proportion of 5 to 15% forms at the outlet of the second turbine unit (6), the temperature in the first temperature range and the temperature in the second differ from each other by not more than 10 K, and a portion of less than 5% of all air products removed from the air separation plant (100) is removed from the air separation plant in an unevaporated and liquid state. The first turbine unit is braked by a cold compressor (4), the second by a generator (G) or a warm booster. The invention also relates to an air separation plant (100).</description><language>eng</language><subject>BLASTING ; COMBINED HEATING AND REFRIGERATION SYSTEMS ; HEAT PUMP SYSTEMS ; HEATING ; LIGHTING ; LIQUEFACTION SOLIDIFICATION OF GASES ; LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS ; MANUFACTURE OR STORAGE OF ICE ; MECHANICAL ENGINEERING ; MIXTURES BY PRESSURE AND COLD TREATMENT ; REFRIGERATION OR COOLING ; WEAPONS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241121&amp;DB=EPODOC&amp;CC=US&amp;NR=2024384928A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241121&amp;DB=EPODOC&amp;CC=US&amp;NR=2024384928A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GOLUBEV, Dimitri</creatorcontrib><title>METHOD AND PLANT FOR PROVIDING A PRESSURIZED OXYGEN-RICH, GASEOUS AIR PRODUCT</title><description>The invention relates to a high-atmospheric-pressure method for producing a pressurized oxygen-rich, gaseous air product. A first partial quantity of the feed air quantity is supplied at a temperature in a first temperature range to a first turbine unit (5), decompressed using same, and fed into a high-pressure column (111). A second partial quantity of the feed air quantity is supplied at a temperature in a second temperature range to a second turbine unit (6), decompressed using same, and fed into a low-pressure column (12). The pressurized, oxygen-rich air product is provided as an internal compression product at 16 to 50 bar, wherein evaporation is effected proceeding from a temperature in a third temperature range. The third temperature range lies above the first and second temperature range, the second temperature range is selected such that a two-phase mixture with a liquid proportion of 5 to 15% forms at the outlet of the second turbine unit (6), the temperature in the first temperature range and the temperature in the second differ from each other by not more than 10 K, and a portion of less than 5% of all air products removed from the air separation plant (100) is removed from the air separation plant in an unevaporated and liquid state. The first turbine unit is braked by a cold compressor (4), the second by a generator (G) or a warm booster. The invention also relates to an air separation plant (100).</description><subject>BLASTING</subject><subject>COMBINED HEATING AND REFRIGERATION SYSTEMS</subject><subject>HEAT PUMP SYSTEMS</subject><subject>HEATING</subject><subject>LIGHTING</subject><subject>LIQUEFACTION SOLIDIFICATION OF GASES</subject><subject>LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS</subject><subject>MANUFACTURE OR STORAGE OF ICE</subject><subject>MECHANICAL ENGINEERING</subject><subject>MIXTURES BY PRESSURE AND COLD TREATMENT</subject><subject>REFRIGERATION OR COOLING</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD1dQ3x8HdRcPRzUQjwcfQLUXDzD1IICPIP83Tx9HNXcASyXYODQ4M8o1xdFPwjIt1d_XSDPJ09dBTcHYNd_UODFRw9wRpcQp1DeBhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRibGFiaWRhaOhMXGqAJulLzY</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>GOLUBEV, Dimitri</creator><scope>EVB</scope></search><sort><creationdate>20241121</creationdate><title>METHOD AND PLANT FOR PROVIDING A PRESSURIZED OXYGEN-RICH, GASEOUS AIR PRODUCT</title><author>GOLUBEV, Dimitri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024384928A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>BLASTING</topic><topic>COMBINED HEATING AND REFRIGERATION SYSTEMS</topic><topic>HEAT PUMP SYSTEMS</topic><topic>HEATING</topic><topic>LIGHTING</topic><topic>LIQUEFACTION SOLIDIFICATION OF GASES</topic><topic>LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS</topic><topic>MANUFACTURE OR STORAGE OF ICE</topic><topic>MECHANICAL ENGINEERING</topic><topic>MIXTURES BY PRESSURE AND COLD TREATMENT</topic><topic>REFRIGERATION OR COOLING</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>GOLUBEV, Dimitri</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GOLUBEV, Dimitri</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD AND PLANT FOR PROVIDING A PRESSURIZED OXYGEN-RICH, GASEOUS AIR PRODUCT</title><date>2024-11-21</date><risdate>2024</risdate><abstract>The invention relates to a high-atmospheric-pressure method for producing a pressurized oxygen-rich, gaseous air product. A first partial quantity of the feed air quantity is supplied at a temperature in a first temperature range to a first turbine unit (5), decompressed using same, and fed into a high-pressure column (111). A second partial quantity of the feed air quantity is supplied at a temperature in a second temperature range to a second turbine unit (6), decompressed using same, and fed into a low-pressure column (12). The pressurized, oxygen-rich air product is provided as an internal compression product at 16 to 50 bar, wherein evaporation is effected proceeding from a temperature in a third temperature range. The third temperature range lies above the first and second temperature range, the second temperature range is selected such that a two-phase mixture with a liquid proportion of 5 to 15% forms at the outlet of the second turbine unit (6), the temperature in the first temperature range and the temperature in the second differ from each other by not more than 10 K, and a portion of less than 5% of all air products removed from the air separation plant (100) is removed from the air separation plant in an unevaporated and liquid state. The first turbine unit is braked by a cold compressor (4), the second by a generator (G) or a warm booster. The invention also relates to an air separation plant (100).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024384928A1
source esp@cenet
subjects BLASTING
COMBINED HEATING AND REFRIGERATION SYSTEMS
HEAT PUMP SYSTEMS
HEATING
LIGHTING
LIQUEFACTION SOLIDIFICATION OF GASES
LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS
MANUFACTURE OR STORAGE OF ICE
MECHANICAL ENGINEERING
MIXTURES BY PRESSURE AND COLD TREATMENT
REFRIGERATION OR COOLING
WEAPONS
title METHOD AND PLANT FOR PROVIDING A PRESSURIZED OXYGEN-RICH, GASEOUS AIR PRODUCT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GOLUBEV,%20Dimitri&rft.date=2024-11-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024384928A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true