OPTIMIZING MULTI-CAMERA MULTI-ENTITY ARTIFICIAL INTELLIGENCE TRACKING SYSTEMS

Systems and methods for optimizing multi-camera multi-entity artificial intelligence tracking systems. Visual and location information of entities from video feeds received from multiple cameras can be obtained by employing an entity detection model and re-identification model. Likelihood scores tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Niculescu-Mizil, Alexandru, Patel, Deep, Melvin, Iain
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Niculescu-Mizil, Alexandru
Patel, Deep
Melvin, Iain
description Systems and methods for optimizing multi-camera multi-entity artificial intelligence tracking systems. Visual and location information of entities from video feeds received from multiple cameras can be obtained by employing an entity detection model and re-identification model. Likelihood scores that entity detections belong to an entity track can be predicted from the visual and location information. The entity detections predicted into entity tracks can be processed by employing combinatorial optimization of the likelihood scores by identifying assumptions from the likelihood scores, entity detections, and the entity tracks, filtering the assumptions with unsatisfiable problems to obtain a filtered assumptions set, and optimizing an answer set by utilizing the filtered assumptions set and the likelihood scores to maximize an overall score and obtain optimized entity tracks. Multiple entities can be monitored by utilizing the optimized entity tracks.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024378892A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024378892A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024378892A13</originalsourceid><addsrcrecordid>eNrjZPD1Dwjx9PWM8vRzV_AN9Qnx1HV29HUNcoRyXP1CPEMiFRyDQjzdPJ09HX0UPP1CXH18PN1d_ZxdFUKCHJ29QVqDI4NDXH2DeRhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRibG5hYWlkaOhMXGqAPIrL9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>OPTIMIZING MULTI-CAMERA MULTI-ENTITY ARTIFICIAL INTELLIGENCE TRACKING SYSTEMS</title><source>esp@cenet</source><creator>Niculescu-Mizil, Alexandru ; Patel, Deep ; Melvin, Iain</creator><creatorcontrib>Niculescu-Mizil, Alexandru ; Patel, Deep ; Melvin, Iain</creatorcontrib><description>Systems and methods for optimizing multi-camera multi-entity artificial intelligence tracking systems. Visual and location information of entities from video feeds received from multiple cameras can be obtained by employing an entity detection model and re-identification model. Likelihood scores that entity detections belong to an entity track can be predicted from the visual and location information. The entity detections predicted into entity tracks can be processed by employing combinatorial optimization of the likelihood scores by identifying assumptions from the likelihood scores, entity detections, and the entity tracks, filtering the assumptions with unsatisfiable problems to obtain a filtered assumptions set, and optimizing an answer set by utilizing the filtered assumptions set and the likelihood scores to maximize an overall score and obtain optimized entity tracks. Multiple entities can be monitored by utilizing the optimized entity tracks.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241114&amp;DB=EPODOC&amp;CC=US&amp;NR=2024378892A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241114&amp;DB=EPODOC&amp;CC=US&amp;NR=2024378892A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Niculescu-Mizil, Alexandru</creatorcontrib><creatorcontrib>Patel, Deep</creatorcontrib><creatorcontrib>Melvin, Iain</creatorcontrib><title>OPTIMIZING MULTI-CAMERA MULTI-ENTITY ARTIFICIAL INTELLIGENCE TRACKING SYSTEMS</title><description>Systems and methods for optimizing multi-camera multi-entity artificial intelligence tracking systems. Visual and location information of entities from video feeds received from multiple cameras can be obtained by employing an entity detection model and re-identification model. Likelihood scores that entity detections belong to an entity track can be predicted from the visual and location information. The entity detections predicted into entity tracks can be processed by employing combinatorial optimization of the likelihood scores by identifying assumptions from the likelihood scores, entity detections, and the entity tracks, filtering the assumptions with unsatisfiable problems to obtain a filtered assumptions set, and optimizing an answer set by utilizing the filtered assumptions set and the likelihood scores to maximize an overall score and obtain optimized entity tracks. Multiple entities can be monitored by utilizing the optimized entity tracks.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD1Dwjx9PWM8vRzV_AN9Qnx1HV29HUNcoRyXP1CPEMiFRyDQjzdPJ09HX0UPP1CXH18PN1d_ZxdFUKCHJ29QVqDI4NDXH2DeRhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRibG5hYWlkaOhMXGqAPIrL9g</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Niculescu-Mizil, Alexandru</creator><creator>Patel, Deep</creator><creator>Melvin, Iain</creator><scope>EVB</scope></search><sort><creationdate>20241114</creationdate><title>OPTIMIZING MULTI-CAMERA MULTI-ENTITY ARTIFICIAL INTELLIGENCE TRACKING SYSTEMS</title><author>Niculescu-Mizil, Alexandru ; Patel, Deep ; Melvin, Iain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024378892A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Niculescu-Mizil, Alexandru</creatorcontrib><creatorcontrib>Patel, Deep</creatorcontrib><creatorcontrib>Melvin, Iain</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Niculescu-Mizil, Alexandru</au><au>Patel, Deep</au><au>Melvin, Iain</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>OPTIMIZING MULTI-CAMERA MULTI-ENTITY ARTIFICIAL INTELLIGENCE TRACKING SYSTEMS</title><date>2024-11-14</date><risdate>2024</risdate><abstract>Systems and methods for optimizing multi-camera multi-entity artificial intelligence tracking systems. Visual and location information of entities from video feeds received from multiple cameras can be obtained by employing an entity detection model and re-identification model. Likelihood scores that entity detections belong to an entity track can be predicted from the visual and location information. The entity detections predicted into entity tracks can be processed by employing combinatorial optimization of the likelihood scores by identifying assumptions from the likelihood scores, entity detections, and the entity tracks, filtering the assumptions with unsatisfiable problems to obtain a filtered assumptions set, and optimizing an answer set by utilizing the filtered assumptions set and the likelihood scores to maximize an overall score and obtain optimized entity tracks. Multiple entities can be monitored by utilizing the optimized entity tracks.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024378892A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title OPTIMIZING MULTI-CAMERA MULTI-ENTITY ARTIFICIAL INTELLIGENCE TRACKING SYSTEMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Niculescu-Mizil,%20Alexandru&rft.date=2024-11-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024378892A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true