DATA DRIVEN AUDIO ENHANCEMENT

Systems and methods are disclosed for audio enhancement. For example, methods may include accessing audio data; determining a window of audio samples based on the audio data; inputting the window of audio samples to a classifier to obtain a classification, in which the classifier includes a neural n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Casas, Raul Alejandro, Rowen, Christopher, Mao, Xuehong, Maydan, Dror, Wojcicki, Kamil Krzysztof, Hijazi, Samer
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Casas, Raul Alejandro
Rowen, Christopher
Mao, Xuehong
Maydan, Dror
Wojcicki, Kamil Krzysztof
Hijazi, Samer
description Systems and methods are disclosed for audio enhancement. For example, methods may include accessing audio data; determining a window of audio samples based on the audio data; inputting the window of audio samples to a classifier to obtain a classification, in which the classifier includes a neural network and the classification takes a value from a set of multiple classes of audio; selecting, based on the classification, an audio enhancement network from a set of multiple audio enhancement networks; applying the selected audio enhancement network to the window of audio samples to obtain an enhanced audio segment, in which the selected audio enhancement network includes a neural network that has been trained using audio signals of a type associated with the classification; and storing, playing, or transmitting an enhanced audio signal based on the enhanced audio segment.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024371392A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024371392A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024371392A13</originalsourceid><addsrcrecordid>eNrjZJB1cQxxVHAJ8gxz9VNwDHXx9Fdw9fNw9HN29XX1C-FhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRibG5obGlkaOhsbEqQIAAPkh1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DATA DRIVEN AUDIO ENHANCEMENT</title><source>esp@cenet</source><creator>Casas, Raul Alejandro ; Rowen, Christopher ; Mao, Xuehong ; Maydan, Dror ; Wojcicki, Kamil Krzysztof ; Hijazi, Samer</creator><creatorcontrib>Casas, Raul Alejandro ; Rowen, Christopher ; Mao, Xuehong ; Maydan, Dror ; Wojcicki, Kamil Krzysztof ; Hijazi, Samer</creatorcontrib><description>Systems and methods are disclosed for audio enhancement. For example, methods may include accessing audio data; determining a window of audio samples based on the audio data; inputting the window of audio samples to a classifier to obtain a classification, in which the classifier includes a neural network and the classification takes a value from a set of multiple classes of audio; selecting, based on the classification, an audio enhancement network from a set of multiple audio enhancement networks; applying the selected audio enhancement network to the window of audio samples to obtain an enhanced audio segment, in which the selected audio enhancement network includes a neural network that has been trained using audio signals of a type associated with the classification; and storing, playing, or transmitting an enhanced audio signal based on the enhanced audio segment.</description><language>eng</language><subject>ACOUSTICS ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241107&amp;DB=EPODOC&amp;CC=US&amp;NR=2024371392A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25571,76555</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241107&amp;DB=EPODOC&amp;CC=US&amp;NR=2024371392A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Casas, Raul Alejandro</creatorcontrib><creatorcontrib>Rowen, Christopher</creatorcontrib><creatorcontrib>Mao, Xuehong</creatorcontrib><creatorcontrib>Maydan, Dror</creatorcontrib><creatorcontrib>Wojcicki, Kamil Krzysztof</creatorcontrib><creatorcontrib>Hijazi, Samer</creatorcontrib><title>DATA DRIVEN AUDIO ENHANCEMENT</title><description>Systems and methods are disclosed for audio enhancement. For example, methods may include accessing audio data; determining a window of audio samples based on the audio data; inputting the window of audio samples to a classifier to obtain a classification, in which the classifier includes a neural network and the classification takes a value from a set of multiple classes of audio; selecting, based on the classification, an audio enhancement network from a set of multiple audio enhancement networks; applying the selected audio enhancement network to the window of audio samples to obtain an enhanced audio segment, in which the selected audio enhancement network includes a neural network that has been trained using audio signals of a type associated with the classification; and storing, playing, or transmitting an enhanced audio signal based on the enhanced audio segment.</description><subject>ACOUSTICS</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJB1cQxxVHAJ8gxz9VNwDHXx9Fdw9fNw9HN29XX1C-FhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRibG5obGlkaOhsbEqQIAAPkh1A</recordid><startdate>20241107</startdate><enddate>20241107</enddate><creator>Casas, Raul Alejandro</creator><creator>Rowen, Christopher</creator><creator>Mao, Xuehong</creator><creator>Maydan, Dror</creator><creator>Wojcicki, Kamil Krzysztof</creator><creator>Hijazi, Samer</creator><scope>EVB</scope></search><sort><creationdate>20241107</creationdate><title>DATA DRIVEN AUDIO ENHANCEMENT</title><author>Casas, Raul Alejandro ; Rowen, Christopher ; Mao, Xuehong ; Maydan, Dror ; Wojcicki, Kamil Krzysztof ; Hijazi, Samer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024371392A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ACOUSTICS</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>Casas, Raul Alejandro</creatorcontrib><creatorcontrib>Rowen, Christopher</creatorcontrib><creatorcontrib>Mao, Xuehong</creatorcontrib><creatorcontrib>Maydan, Dror</creatorcontrib><creatorcontrib>Wojcicki, Kamil Krzysztof</creatorcontrib><creatorcontrib>Hijazi, Samer</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Casas, Raul Alejandro</au><au>Rowen, Christopher</au><au>Mao, Xuehong</au><au>Maydan, Dror</au><au>Wojcicki, Kamil Krzysztof</au><au>Hijazi, Samer</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DATA DRIVEN AUDIO ENHANCEMENT</title><date>2024-11-07</date><risdate>2024</risdate><abstract>Systems and methods are disclosed for audio enhancement. For example, methods may include accessing audio data; determining a window of audio samples based on the audio data; inputting the window of audio samples to a classifier to obtain a classification, in which the classifier includes a neural network and the classification takes a value from a set of multiple classes of audio; selecting, based on the classification, an audio enhancement network from a set of multiple audio enhancement networks; applying the selected audio enhancement network to the window of audio samples to obtain an enhanced audio segment, in which the selected audio enhancement network includes a neural network that has been trained using audio signals of a type associated with the classification; and storing, playing, or transmitting an enhanced audio signal based on the enhanced audio segment.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024371392A1
source esp@cenet
subjects ACOUSTICS
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title DATA DRIVEN AUDIO ENHANCEMENT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T23%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Casas,%20Raul%20Alejandro&rft.date=2024-11-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024371392A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true