SPARSE REPRESENTATION FOR MACHINE LEARNING THE PROPERTIES OF DEFECTS IN 2D MATERIALS

A method for predicting at least one property of a crystal of a material, with the crystal exhibiting at least one point defect. At least one module samples structures of materials and point defects of the crystal. The method comprises: providing a neural network. The neural network comprises: recei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kazeev, Nikita, Faleev, Maxim, Protasov, Stanislav, Al-Maeeni, Abdalaziz Rashid, Lukin, Ruslan, Tormasov, Alexander, Romanov, Ignat, Bell, Serg, Ustyuzhanin, Andrey, Dobrovolskiy, Nikolay
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Kazeev, Nikita
Faleev, Maxim
Protasov, Stanislav
Al-Maeeni, Abdalaziz Rashid
Lukin, Ruslan
Tormasov, Alexander
Romanov, Ignat
Bell, Serg
Ustyuzhanin, Andrey
Dobrovolskiy, Nikolay
description A method for predicting at least one property of a crystal of a material, with the crystal exhibiting at least one point defect. At least one module samples structures of materials and point defects of the crystal. The method comprises: providing a neural network. The neural network comprises: receiving as input a structure of the material and an ideal crystal unit cell structure. The neural network also comprises: outputting at least one target quantity and using a generated set of data and representing the point defect. The point defect represents a set of coordinates and a type of the point defect and a crystal unit cell structure. The neural network further comprises: receiving as input at least one of a cloud of defect points and a global state vector. The neural network additionally comprises outputting a vector.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024363204A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024363204A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024363204A13</originalsourceid><addsrcrecordid>eNqNy7EKwjAURuEuDqK-wwVnoabFPaR_bKAm4d7rXIrESbRQ3x8dfACns3xnXalkywJiZIYgqtWQIvnEdLGuDxE0wHIM8UzagzKnDNYAoeSpg4dToRDJdN9BwcEOsq1W9-mxlN2vm2rvoa4_lPk1lmWebuVZ3uNVTG3a5tSYurXH5j_1Aeo5MOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SPARSE REPRESENTATION FOR MACHINE LEARNING THE PROPERTIES OF DEFECTS IN 2D MATERIALS</title><source>esp@cenet</source><creator>Kazeev, Nikita ; Faleev, Maxim ; Protasov, Stanislav ; Al-Maeeni, Abdalaziz Rashid ; Lukin, Ruslan ; Tormasov, Alexander ; Romanov, Ignat ; Bell, Serg ; Ustyuzhanin, Andrey ; Dobrovolskiy, Nikolay</creator><creatorcontrib>Kazeev, Nikita ; Faleev, Maxim ; Protasov, Stanislav ; Al-Maeeni, Abdalaziz Rashid ; Lukin, Ruslan ; Tormasov, Alexander ; Romanov, Ignat ; Bell, Serg ; Ustyuzhanin, Andrey ; Dobrovolskiy, Nikolay</creatorcontrib><description>A method for predicting at least one property of a crystal of a material, with the crystal exhibiting at least one point defect. At least one module samples structures of materials and point defects of the crystal. The method comprises: providing a neural network. The neural network comprises: receiving as input a structure of the material and an ideal crystal unit cell structure. The neural network also comprises: outputting at least one target quantity and using a generated set of data and representing the point defect. The point defect represents a set of coordinates and a type of the point defect and a crystal unit cell structure. The neural network further comprises: receiving as input at least one of a cloud of defect points and a global state vector. The neural network additionally comprises outputting a vector.</description><language>eng</language><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241031&amp;DB=EPODOC&amp;CC=US&amp;NR=2024363204A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241031&amp;DB=EPODOC&amp;CC=US&amp;NR=2024363204A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kazeev, Nikita</creatorcontrib><creatorcontrib>Faleev, Maxim</creatorcontrib><creatorcontrib>Protasov, Stanislav</creatorcontrib><creatorcontrib>Al-Maeeni, Abdalaziz Rashid</creatorcontrib><creatorcontrib>Lukin, Ruslan</creatorcontrib><creatorcontrib>Tormasov, Alexander</creatorcontrib><creatorcontrib>Romanov, Ignat</creatorcontrib><creatorcontrib>Bell, Serg</creatorcontrib><creatorcontrib>Ustyuzhanin, Andrey</creatorcontrib><creatorcontrib>Dobrovolskiy, Nikolay</creatorcontrib><title>SPARSE REPRESENTATION FOR MACHINE LEARNING THE PROPERTIES OF DEFECTS IN 2D MATERIALS</title><description>A method for predicting at least one property of a crystal of a material, with the crystal exhibiting at least one point defect. At least one module samples structures of materials and point defects of the crystal. The method comprises: providing a neural network. The neural network comprises: receiving as input a structure of the material and an ideal crystal unit cell structure. The neural network also comprises: outputting at least one target quantity and using a generated set of data and representing the point defect. The point defect represents a set of coordinates and a type of the point defect and a crystal unit cell structure. The neural network further comprises: receiving as input at least one of a cloud of defect points and a global state vector. The neural network additionally comprises outputting a vector.</description><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7EKwjAURuEuDqK-wwVnoabFPaR_bKAm4d7rXIrESbRQ3x8dfACns3xnXalkywJiZIYgqtWQIvnEdLGuDxE0wHIM8UzagzKnDNYAoeSpg4dToRDJdN9BwcEOsq1W9-mxlN2vm2rvoa4_lPk1lmWebuVZ3uNVTG3a5tSYurXH5j_1Aeo5MOA</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Kazeev, Nikita</creator><creator>Faleev, Maxim</creator><creator>Protasov, Stanislav</creator><creator>Al-Maeeni, Abdalaziz Rashid</creator><creator>Lukin, Ruslan</creator><creator>Tormasov, Alexander</creator><creator>Romanov, Ignat</creator><creator>Bell, Serg</creator><creator>Ustyuzhanin, Andrey</creator><creator>Dobrovolskiy, Nikolay</creator><scope>EVB</scope></search><sort><creationdate>20241031</creationdate><title>SPARSE REPRESENTATION FOR MACHINE LEARNING THE PROPERTIES OF DEFECTS IN 2D MATERIALS</title><author>Kazeev, Nikita ; Faleev, Maxim ; Protasov, Stanislav ; Al-Maeeni, Abdalaziz Rashid ; Lukin, Ruslan ; Tormasov, Alexander ; Romanov, Ignat ; Bell, Serg ; Ustyuzhanin, Andrey ; Dobrovolskiy, Nikolay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024363204A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Kazeev, Nikita</creatorcontrib><creatorcontrib>Faleev, Maxim</creatorcontrib><creatorcontrib>Protasov, Stanislav</creatorcontrib><creatorcontrib>Al-Maeeni, Abdalaziz Rashid</creatorcontrib><creatorcontrib>Lukin, Ruslan</creatorcontrib><creatorcontrib>Tormasov, Alexander</creatorcontrib><creatorcontrib>Romanov, Ignat</creatorcontrib><creatorcontrib>Bell, Serg</creatorcontrib><creatorcontrib>Ustyuzhanin, Andrey</creatorcontrib><creatorcontrib>Dobrovolskiy, Nikolay</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kazeev, Nikita</au><au>Faleev, Maxim</au><au>Protasov, Stanislav</au><au>Al-Maeeni, Abdalaziz Rashid</au><au>Lukin, Ruslan</au><au>Tormasov, Alexander</au><au>Romanov, Ignat</au><au>Bell, Serg</au><au>Ustyuzhanin, Andrey</au><au>Dobrovolskiy, Nikolay</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SPARSE REPRESENTATION FOR MACHINE LEARNING THE PROPERTIES OF DEFECTS IN 2D MATERIALS</title><date>2024-10-31</date><risdate>2024</risdate><abstract>A method for predicting at least one property of a crystal of a material, with the crystal exhibiting at least one point defect. At least one module samples structures of materials and point defects of the crystal. The method comprises: providing a neural network. The neural network comprises: receiving as input a structure of the material and an ideal crystal unit cell structure. The neural network also comprises: outputting at least one target quantity and using a generated set of data and representing the point defect. The point defect represents a set of coordinates and a type of the point defect and a crystal unit cell structure. The neural network further comprises: receiving as input at least one of a cloud of defect points and a global state vector. The neural network additionally comprises outputting a vector.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024363204A1
source esp@cenet
subjects INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title SPARSE REPRESENTATION FOR MACHINE LEARNING THE PROPERTIES OF DEFECTS IN 2D MATERIALS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kazeev,%20Nikita&rft.date=2024-10-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024363204A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true