CAUSAL DISCOVERY AND MISSING VALUE IMPUTATION

A computer-implemented method comprising: receiving an input vector comprising values of variables; using a first neural network to encode the values of the variables of the input vector into a plurality of latent vectors; determining an output vector by inputting the plurality of latent vectors int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PEYTON JONES, Simon Loftus, ZHANG, Cheng, LAMB, Angus James, MORALES- ÁLVAREZ, Pablo, ALLAMANIS, Miltiadis
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator PEYTON JONES, Simon Loftus
ZHANG, Cheng
LAMB, Angus James
MORALES- ÁLVAREZ, Pablo
ALLAMANIS, Miltiadis
description A computer-implemented method comprising: receiving an input vector comprising values of variables; using a first neural network to encode the values of the variables of the input vector into a plurality of latent vectors; determining an output vector by inputting the plurality of latent vectors into a second neural network comprising a graph neural network, wherein the graph neural network is parametrized by a graph comprising edge probabilities indicating causal relationships between the variables; and minimising a loss function by tuning the edge probabilities of the graph, at least one parameter of the first neural network and at least one parameter of the second neural network, wherein the loss function comprises a function of the graph and a measure of difference between the input vector and the output vector
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024338559A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024338559A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024338559A13</originalsourceid><addsrcrecordid>eNrjZNB1dgwNdvRRcPEMdvYPcw2KVHD0c1Hw9QwO9vRzVwhz9Al1VfD0DQgNcQzx9PfjYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkYmxsYWpqaWjobGxKkCAGPVJp8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CAUSAL DISCOVERY AND MISSING VALUE IMPUTATION</title><source>esp@cenet</source><creator>PEYTON JONES, Simon Loftus ; ZHANG, Cheng ; LAMB, Angus James ; MORALES- ÁLVAREZ, Pablo ; ALLAMANIS, Miltiadis</creator><creatorcontrib>PEYTON JONES, Simon Loftus ; ZHANG, Cheng ; LAMB, Angus James ; MORALES- ÁLVAREZ, Pablo ; ALLAMANIS, Miltiadis</creatorcontrib><description>A computer-implemented method comprising: receiving an input vector comprising values of variables; using a first neural network to encode the values of the variables of the input vector into a plurality of latent vectors; determining an output vector by inputting the plurality of latent vectors into a second neural network comprising a graph neural network, wherein the graph neural network is parametrized by a graph comprising edge probabilities indicating causal relationships between the variables; and minimising a loss function by tuning the edge probabilities of the graph, at least one parameter of the first neural network and at least one parameter of the second neural network, wherein the loss function comprises a function of the graph and a measure of difference between the input vector and the output vector</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241010&amp;DB=EPODOC&amp;CC=US&amp;NR=2024338559A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241010&amp;DB=EPODOC&amp;CC=US&amp;NR=2024338559A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PEYTON JONES, Simon Loftus</creatorcontrib><creatorcontrib>ZHANG, Cheng</creatorcontrib><creatorcontrib>LAMB, Angus James</creatorcontrib><creatorcontrib>MORALES- ÁLVAREZ, Pablo</creatorcontrib><creatorcontrib>ALLAMANIS, Miltiadis</creatorcontrib><title>CAUSAL DISCOVERY AND MISSING VALUE IMPUTATION</title><description>A computer-implemented method comprising: receiving an input vector comprising values of variables; using a first neural network to encode the values of the variables of the input vector into a plurality of latent vectors; determining an output vector by inputting the plurality of latent vectors into a second neural network comprising a graph neural network, wherein the graph neural network is parametrized by a graph comprising edge probabilities indicating causal relationships between the variables; and minimising a loss function by tuning the edge probabilities of the graph, at least one parameter of the first neural network and at least one parameter of the second neural network, wherein the loss function comprises a function of the graph and a measure of difference between the input vector and the output vector</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB1dgwNdvRRcPEMdvYPcw2KVHD0c1Hw9QwO9vRzVwhz9Al1VfD0DQgNcQzx9PfjYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkYmxsYWpqaWjobGxKkCAGPVJp8</recordid><startdate>20241010</startdate><enddate>20241010</enddate><creator>PEYTON JONES, Simon Loftus</creator><creator>ZHANG, Cheng</creator><creator>LAMB, Angus James</creator><creator>MORALES- ÁLVAREZ, Pablo</creator><creator>ALLAMANIS, Miltiadis</creator><scope>EVB</scope></search><sort><creationdate>20241010</creationdate><title>CAUSAL DISCOVERY AND MISSING VALUE IMPUTATION</title><author>PEYTON JONES, Simon Loftus ; ZHANG, Cheng ; LAMB, Angus James ; MORALES- ÁLVAREZ, Pablo ; ALLAMANIS, Miltiadis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024338559A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>PEYTON JONES, Simon Loftus</creatorcontrib><creatorcontrib>ZHANG, Cheng</creatorcontrib><creatorcontrib>LAMB, Angus James</creatorcontrib><creatorcontrib>MORALES- ÁLVAREZ, Pablo</creatorcontrib><creatorcontrib>ALLAMANIS, Miltiadis</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PEYTON JONES, Simon Loftus</au><au>ZHANG, Cheng</au><au>LAMB, Angus James</au><au>MORALES- ÁLVAREZ, Pablo</au><au>ALLAMANIS, Miltiadis</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CAUSAL DISCOVERY AND MISSING VALUE IMPUTATION</title><date>2024-10-10</date><risdate>2024</risdate><abstract>A computer-implemented method comprising: receiving an input vector comprising values of variables; using a first neural network to encode the values of the variables of the input vector into a plurality of latent vectors; determining an output vector by inputting the plurality of latent vectors into a second neural network comprising a graph neural network, wherein the graph neural network is parametrized by a graph comprising edge probabilities indicating causal relationships between the variables; and minimising a loss function by tuning the edge probabilities of the graph, at least one parameter of the first neural network and at least one parameter of the second neural network, wherein the loss function comprises a function of the graph and a measure of difference between the input vector and the output vector</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024338559A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title CAUSAL DISCOVERY AND MISSING VALUE IMPUTATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PEYTON%20JONES,%20Simon%20Loftus&rft.date=2024-10-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024338559A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true