MEDICAL CONVERSATIONAL INTELLIGENCE

Systems and methods for performing medical audio summarizing for medical conversations are disclosed. An audio file and meta data for a medical conversation are provided to a medical audio summarization system. A transcription machine learning model is used by the medical audio summarization system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhang, Tianze, Chiou, Matthew Chih-Hui, Chakraborty, Amiya Kishor, Arora, Anuroop, Handa, Sarthak, Gupta, Mohit Narendra, Sembium Varadarajan, Varun, Deng, Jesse, McGookey, Shane Michael, Sawant, Amit Vithal, Bhattarai, Rohil, Carpenter, Glen Herschel, Schiff, Samuel Benjamin, Gupta, Vijit
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Zhang, Tianze
Chiou, Matthew Chih-Hui
Chakraborty, Amiya Kishor
Arora, Anuroop
Handa, Sarthak
Gupta, Mohit Narendra
Sembium Varadarajan, Varun
Deng, Jesse
McGookey, Shane Michael
Sawant, Amit Vithal
Bhattarai, Rohil
Carpenter, Glen Herschel
Schiff, Samuel Benjamin
Gupta, Vijit
description Systems and methods for performing medical audio summarizing for medical conversations are disclosed. An audio file and meta data for a medical conversation are provided to a medical audio summarization system. A transcription machine learning model is used by the medical audio summarization system to generate a transcript and a natural language processing service of the medical audio summarization system is used to generate a summary of the transcript. The natural language processing service may include at least four machine learning models that identify medical entities in the transcript, identify speaker roles in the transcript, determine sections of the transcript corresponding to the summary, and extract or abstract phrases for the summary. The identified medical entities and speaker roles, determined sections, and extracted or abstracted phrases may then be used to generate the summary.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024331821A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024331821A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024331821A13</originalsourceid><addsrcrecordid>eNrjZFD2dXXxdHb0UXD29wtzDQp2DPH09wNyPf1CXH18PN1d_ZxdeRhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRibGxoYWRoaOhMXGqAPFoI7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MEDICAL CONVERSATIONAL INTELLIGENCE</title><source>esp@cenet</source><creator>Zhang, Tianze ; Chiou, Matthew Chih-Hui ; Chakraborty, Amiya Kishor ; Arora, Anuroop ; Handa, Sarthak ; Gupta, Mohit Narendra ; Sembium Varadarajan, Varun ; Deng, Jesse ; McGookey, Shane Michael ; Sawant, Amit Vithal ; Bhattarai, Rohil ; Carpenter, Glen Herschel ; Schiff, Samuel Benjamin ; Gupta, Vijit</creator><creatorcontrib>Zhang, Tianze ; Chiou, Matthew Chih-Hui ; Chakraborty, Amiya Kishor ; Arora, Anuroop ; Handa, Sarthak ; Gupta, Mohit Narendra ; Sembium Varadarajan, Varun ; Deng, Jesse ; McGookey, Shane Michael ; Sawant, Amit Vithal ; Bhattarai, Rohil ; Carpenter, Glen Herschel ; Schiff, Samuel Benjamin ; Gupta, Vijit</creatorcontrib><description>Systems and methods for performing medical audio summarizing for medical conversations are disclosed. An audio file and meta data for a medical conversation are provided to a medical audio summarization system. A transcription machine learning model is used by the medical audio summarization system to generate a transcript and a natural language processing service of the medical audio summarization system is used to generate a summary of the transcript. The natural language processing service may include at least four machine learning models that identify medical entities in the transcript, identify speaker roles in the transcript, determine sections of the transcript corresponding to the summary, and extract or abstract phrases for the summary. The identified medical entities and speaker roles, determined sections, and extracted or abstracted phrases may then be used to generate the summary.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241003&amp;DB=EPODOC&amp;CC=US&amp;NR=2024331821A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241003&amp;DB=EPODOC&amp;CC=US&amp;NR=2024331821A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Zhang, Tianze</creatorcontrib><creatorcontrib>Chiou, Matthew Chih-Hui</creatorcontrib><creatorcontrib>Chakraborty, Amiya Kishor</creatorcontrib><creatorcontrib>Arora, Anuroop</creatorcontrib><creatorcontrib>Handa, Sarthak</creatorcontrib><creatorcontrib>Gupta, Mohit Narendra</creatorcontrib><creatorcontrib>Sembium Varadarajan, Varun</creatorcontrib><creatorcontrib>Deng, Jesse</creatorcontrib><creatorcontrib>McGookey, Shane Michael</creatorcontrib><creatorcontrib>Sawant, Amit Vithal</creatorcontrib><creatorcontrib>Bhattarai, Rohil</creatorcontrib><creatorcontrib>Carpenter, Glen Herschel</creatorcontrib><creatorcontrib>Schiff, Samuel Benjamin</creatorcontrib><creatorcontrib>Gupta, Vijit</creatorcontrib><title>MEDICAL CONVERSATIONAL INTELLIGENCE</title><description>Systems and methods for performing medical audio summarizing for medical conversations are disclosed. An audio file and meta data for a medical conversation are provided to a medical audio summarization system. A transcription machine learning model is used by the medical audio summarization system to generate a transcript and a natural language processing service of the medical audio summarization system is used to generate a summary of the transcript. The natural language processing service may include at least four machine learning models that identify medical entities in the transcript, identify speaker roles in the transcript, determine sections of the transcript corresponding to the summary, and extract or abstract phrases for the summary. The identified medical entities and speaker roles, determined sections, and extracted or abstracted phrases may then be used to generate the summary.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD2dXXxdHb0UXD29wtzDQp2DPH09wNyPf1CXH18PN1d_ZxdeRhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRibGxoYWRoaOhMXGqAPFoI7w</recordid><startdate>20241003</startdate><enddate>20241003</enddate><creator>Zhang, Tianze</creator><creator>Chiou, Matthew Chih-Hui</creator><creator>Chakraborty, Amiya Kishor</creator><creator>Arora, Anuroop</creator><creator>Handa, Sarthak</creator><creator>Gupta, Mohit Narendra</creator><creator>Sembium Varadarajan, Varun</creator><creator>Deng, Jesse</creator><creator>McGookey, Shane Michael</creator><creator>Sawant, Amit Vithal</creator><creator>Bhattarai, Rohil</creator><creator>Carpenter, Glen Herschel</creator><creator>Schiff, Samuel Benjamin</creator><creator>Gupta, Vijit</creator><scope>EVB</scope></search><sort><creationdate>20241003</creationdate><title>MEDICAL CONVERSATIONAL INTELLIGENCE</title><author>Zhang, Tianze ; Chiou, Matthew Chih-Hui ; Chakraborty, Amiya Kishor ; Arora, Anuroop ; Handa, Sarthak ; Gupta, Mohit Narendra ; Sembium Varadarajan, Varun ; Deng, Jesse ; McGookey, Shane Michael ; Sawant, Amit Vithal ; Bhattarai, Rohil ; Carpenter, Glen Herschel ; Schiff, Samuel Benjamin ; Gupta, Vijit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024331821A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tianze</creatorcontrib><creatorcontrib>Chiou, Matthew Chih-Hui</creatorcontrib><creatorcontrib>Chakraborty, Amiya Kishor</creatorcontrib><creatorcontrib>Arora, Anuroop</creatorcontrib><creatorcontrib>Handa, Sarthak</creatorcontrib><creatorcontrib>Gupta, Mohit Narendra</creatorcontrib><creatorcontrib>Sembium Varadarajan, Varun</creatorcontrib><creatorcontrib>Deng, Jesse</creatorcontrib><creatorcontrib>McGookey, Shane Michael</creatorcontrib><creatorcontrib>Sawant, Amit Vithal</creatorcontrib><creatorcontrib>Bhattarai, Rohil</creatorcontrib><creatorcontrib>Carpenter, Glen Herschel</creatorcontrib><creatorcontrib>Schiff, Samuel Benjamin</creatorcontrib><creatorcontrib>Gupta, Vijit</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Tianze</au><au>Chiou, Matthew Chih-Hui</au><au>Chakraborty, Amiya Kishor</au><au>Arora, Anuroop</au><au>Handa, Sarthak</au><au>Gupta, Mohit Narendra</au><au>Sembium Varadarajan, Varun</au><au>Deng, Jesse</au><au>McGookey, Shane Michael</au><au>Sawant, Amit Vithal</au><au>Bhattarai, Rohil</au><au>Carpenter, Glen Herschel</au><au>Schiff, Samuel Benjamin</au><au>Gupta, Vijit</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MEDICAL CONVERSATIONAL INTELLIGENCE</title><date>2024-10-03</date><risdate>2024</risdate><abstract>Systems and methods for performing medical audio summarizing for medical conversations are disclosed. An audio file and meta data for a medical conversation are provided to a medical audio summarization system. A transcription machine learning model is used by the medical audio summarization system to generate a transcript and a natural language processing service of the medical audio summarization system is used to generate a summary of the transcript. The natural language processing service may include at least four machine learning models that identify medical entities in the transcript, identify speaker roles in the transcript, determine sections of the transcript corresponding to the summary, and extract or abstract phrases for the summary. The identified medical entities and speaker roles, determined sections, and extracted or abstracted phrases may then be used to generate the summary.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024331821A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title MEDICAL CONVERSATIONAL INTELLIGENCE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Zhang,%20Tianze&rft.date=2024-10-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024331821A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true