ORGAN IDENTIFICATION USING AI

A computer-implemented method of identifying a tissue type in digital histological images of human or animal tissue comprises training a convolutional neural network CNN to identify a particular target tissue type in a plurality of training data sets of digital histological images, inputting a test...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ARCADU, Filippo, ROMERO PALOMO, Fernando, GAMEZ SERNA, Citlalli
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ARCADU, Filippo
ROMERO PALOMO, Fernando
GAMEZ SERNA, Citlalli
description A computer-implemented method of identifying a tissue type in digital histological images of human or animal tissue comprises training a convolutional neural network CNN to identify a particular target tissue type in a plurality of training data sets of digital histological images, inputting a test data set of digital histological images into the trained convolutional neural network, receiving as an output result of the convolutional neural network a probability value that the inputted test data set corresponds to the target tissue type. A training procedure of the CNN comprises performing with a plurality of training data sets the steps of selecting a target tissue area of the training data set, dividing the target tissue area into a different sets of tiles of constant size but having different image magnifications, inputting the sets of tiles into a multi-headed convolutional neural network, wherein the sets of tiles having different image magnifications are processed in parallel and the features of the sets of tiles are concatenated.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024331415A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024331415A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024331415A13</originalsourceid><addsrcrecordid>eNrjZJD1D3J39FPwdHH1C_F083R2DPH091MIDfb0c1dw9ORhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRibGxoYmhqaOhsbEqQIADJIh2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ORGAN IDENTIFICATION USING AI</title><source>esp@cenet</source><creator>ARCADU, Filippo ; ROMERO PALOMO, Fernando ; GAMEZ SERNA, Citlalli</creator><creatorcontrib>ARCADU, Filippo ; ROMERO PALOMO, Fernando ; GAMEZ SERNA, Citlalli</creatorcontrib><description>A computer-implemented method of identifying a tissue type in digital histological images of human or animal tissue comprises training a convolutional neural network CNN to identify a particular target tissue type in a plurality of training data sets of digital histological images, inputting a test data set of digital histological images into the trained convolutional neural network, receiving as an output result of the convolutional neural network a probability value that the inputted test data set corresponds to the target tissue type. A training procedure of the CNN comprises performing with a plurality of training data sets the steps of selecting a target tissue area of the training data set, dividing the target tissue area into a different sets of tiles of constant size but having different image magnifications, inputting the sets of tiles into a multi-headed convolutional neural network, wherein the sets of tiles having different image magnifications are processed in parallel and the features of the sets of tiles are concatenated.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241003&amp;DB=EPODOC&amp;CC=US&amp;NR=2024331415A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241003&amp;DB=EPODOC&amp;CC=US&amp;NR=2024331415A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ARCADU, Filippo</creatorcontrib><creatorcontrib>ROMERO PALOMO, Fernando</creatorcontrib><creatorcontrib>GAMEZ SERNA, Citlalli</creatorcontrib><title>ORGAN IDENTIFICATION USING AI</title><description>A computer-implemented method of identifying a tissue type in digital histological images of human or animal tissue comprises training a convolutional neural network CNN to identify a particular target tissue type in a plurality of training data sets of digital histological images, inputting a test data set of digital histological images into the trained convolutional neural network, receiving as an output result of the convolutional neural network a probability value that the inputted test data set corresponds to the target tissue type. A training procedure of the CNN comprises performing with a plurality of training data sets the steps of selecting a target tissue area of the training data set, dividing the target tissue area into a different sets of tiles of constant size but having different image magnifications, inputting the sets of tiles into a multi-headed convolutional neural network, wherein the sets of tiles having different image magnifications are processed in parallel and the features of the sets of tiles are concatenated.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJD1D3J39FPwdHH1C_F083R2DPH091MIDfb0c1dw9ORhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRibGxoYmhqaOhsbEqQIADJIh2w</recordid><startdate>20241003</startdate><enddate>20241003</enddate><creator>ARCADU, Filippo</creator><creator>ROMERO PALOMO, Fernando</creator><creator>GAMEZ SERNA, Citlalli</creator><scope>EVB</scope></search><sort><creationdate>20241003</creationdate><title>ORGAN IDENTIFICATION USING AI</title><author>ARCADU, Filippo ; ROMERO PALOMO, Fernando ; GAMEZ SERNA, Citlalli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024331415A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ARCADU, Filippo</creatorcontrib><creatorcontrib>ROMERO PALOMO, Fernando</creatorcontrib><creatorcontrib>GAMEZ SERNA, Citlalli</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ARCADU, Filippo</au><au>ROMERO PALOMO, Fernando</au><au>GAMEZ SERNA, Citlalli</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ORGAN IDENTIFICATION USING AI</title><date>2024-10-03</date><risdate>2024</risdate><abstract>A computer-implemented method of identifying a tissue type in digital histological images of human or animal tissue comprises training a convolutional neural network CNN to identify a particular target tissue type in a plurality of training data sets of digital histological images, inputting a test data set of digital histological images into the trained convolutional neural network, receiving as an output result of the convolutional neural network a probability value that the inputted test data set corresponds to the target tissue type. A training procedure of the CNN comprises performing with a plurality of training data sets the steps of selecting a target tissue area of the training data set, dividing the target tissue area into a different sets of tiles of constant size but having different image magnifications, inputting the sets of tiles into a multi-headed convolutional neural network, wherein the sets of tiles having different image magnifications are processed in parallel and the features of the sets of tiles are concatenated.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024331415A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
PHYSICS
title ORGAN IDENTIFICATION USING AI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ARCADU,%20Filippo&rft.date=2024-10-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024331415A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true