VIDEO DENOISING USING RECURRENT NEURAL NETWORK WITH GATED RECURRENT UNIT
A method of denoising a video includes: capturing a plurality of frames of the video; inputting raw data from the frames into a recurrent neural network, said recurrent neural network including a gated recurrent unit; outputting a first denoised frame from the recurrent neural network while maintain...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Pinsky, Gil Shalom, Itai Ben |
description | A method of denoising a video includes: capturing a plurality of frames of the video; inputting raw data from the frames into a recurrent neural network, said recurrent neural network including a gated recurrent unit; outputting a first denoised frame from the recurrent neural network while maintaining vectors corresponding to the first denoised frame in a memory of the recurrent neural network; and, for each subsequent frame of the video, inputting raw data from the frame and the vectors from the memory into the recurrent neural network, while applying the gated recurrent unit in order to selectively remove vectors from consideration of the neural network, and outputting subsequent denoised frames from the recurrent neural network, while storing vectors from the denoised frame in the memory. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024331111A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024331111A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024331111A13</originalsourceid><addsrcrecordid>eNrjZPAI83Rx9VdwcfXz9wz29HNXCAWTQa7OoUFBrn4hCn6uoUGOPkAqJNw_yFsh3DPEQ8HdMcTVBUlNqJ9nCA8Da1piTnEqL5TmZlB2cw1x9tBNLciPTy0uSExOzUstiQ8NNjIwMjE2NgQCR0Nj4lQBAORgLgo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>VIDEO DENOISING USING RECURRENT NEURAL NETWORK WITH GATED RECURRENT UNIT</title><source>esp@cenet</source><creator>Pinsky, Gil ; Shalom, Itai Ben</creator><creatorcontrib>Pinsky, Gil ; Shalom, Itai Ben</creatorcontrib><description>A method of denoising a video includes: capturing a plurality of frames of the video; inputting raw data from the frames into a recurrent neural network, said recurrent neural network including a gated recurrent unit; outputting a first denoised frame from the recurrent neural network while maintaining vectors corresponding to the first denoised frame in a memory of the recurrent neural network; and, for each subsequent frame of the video, inputting raw data from the frame and the vectors from the memory into the recurrent neural network, while applying the gated recurrent unit in order to selectively remove vectors from consideration of the neural network, and outputting subsequent denoised frames from the recurrent neural network, while storing vectors from the denoised frame in the memory.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241003&DB=EPODOC&CC=US&NR=2024331111A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241003&DB=EPODOC&CC=US&NR=2024331111A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Pinsky, Gil</creatorcontrib><creatorcontrib>Shalom, Itai Ben</creatorcontrib><title>VIDEO DENOISING USING RECURRENT NEURAL NETWORK WITH GATED RECURRENT UNIT</title><description>A method of denoising a video includes: capturing a plurality of frames of the video; inputting raw data from the frames into a recurrent neural network, said recurrent neural network including a gated recurrent unit; outputting a first denoised frame from the recurrent neural network while maintaining vectors corresponding to the first denoised frame in a memory of the recurrent neural network; and, for each subsequent frame of the video, inputting raw data from the frame and the vectors from the memory into the recurrent neural network, while applying the gated recurrent unit in order to selectively remove vectors from consideration of the neural network, and outputting subsequent denoised frames from the recurrent neural network, while storing vectors from the denoised frame in the memory.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAI83Rx9VdwcfXz9wz29HNXCAWTQa7OoUFBrn4hCn6uoUGOPkAqJNw_yFsh3DPEQ8HdMcTVBUlNqJ9nCA8Da1piTnEqL5TmZlB2cw1x9tBNLciPTy0uSExOzUstiQ8NNjIwMjE2NgQCR0Nj4lQBAORgLgo</recordid><startdate>20241003</startdate><enddate>20241003</enddate><creator>Pinsky, Gil</creator><creator>Shalom, Itai Ben</creator><scope>EVB</scope></search><sort><creationdate>20241003</creationdate><title>VIDEO DENOISING USING RECURRENT NEURAL NETWORK WITH GATED RECURRENT UNIT</title><author>Pinsky, Gil ; Shalom, Itai Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024331111A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Pinsky, Gil</creatorcontrib><creatorcontrib>Shalom, Itai Ben</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pinsky, Gil</au><au>Shalom, Itai Ben</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>VIDEO DENOISING USING RECURRENT NEURAL NETWORK WITH GATED RECURRENT UNIT</title><date>2024-10-03</date><risdate>2024</risdate><abstract>A method of denoising a video includes: capturing a plurality of frames of the video; inputting raw data from the frames into a recurrent neural network, said recurrent neural network including a gated recurrent unit; outputting a first denoised frame from the recurrent neural network while maintaining vectors corresponding to the first denoised frame in a memory of the recurrent neural network; and, for each subsequent frame of the video, inputting raw data from the frame and the vectors from the memory into the recurrent neural network, while applying the gated recurrent unit in order to selectively remove vectors from consideration of the neural network, and outputting subsequent denoised frames from the recurrent neural network, while storing vectors from the denoised frame in the memory.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024331111A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | VIDEO DENOISING USING RECURRENT NEURAL NETWORK WITH GATED RECURRENT UNIT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Pinsky,%20Gil&rft.date=2024-10-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024331111A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |