VIDEO DENOISING USING RECURRENT NEURAL NETWORK WITH GATED RECURRENT UNIT

A method of denoising a video includes: capturing a plurality of frames of the video; inputting raw data from the frames into a recurrent neural network, said recurrent neural network including a gated recurrent unit; outputting a first denoised frame from the recurrent neural network while maintain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pinsky, Gil, Shalom, Itai Ben
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Pinsky, Gil
Shalom, Itai Ben
description A method of denoising a video includes: capturing a plurality of frames of the video; inputting raw data from the frames into a recurrent neural network, said recurrent neural network including a gated recurrent unit; outputting a first denoised frame from the recurrent neural network while maintaining vectors corresponding to the first denoised frame in a memory of the recurrent neural network; and, for each subsequent frame of the video, inputting raw data from the frame and the vectors from the memory into the recurrent neural network, while applying the gated recurrent unit in order to selectively remove vectors from consideration of the neural network, and outputting subsequent denoised frames from the recurrent neural network, while storing vectors from the denoised frame in the memory.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024331111A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024331111A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024331111A13</originalsourceid><addsrcrecordid>eNrjZPAI83Rx9VdwcfXz9wz29HNXCAWTQa7OoUFBrn4hCn6uoUGOPkAqJNw_yFsh3DPEQ8HdMcTVBUlNqJ9nCA8Da1piTnEqL5TmZlB2cw1x9tBNLciPTy0uSExOzUstiQ8NNjIwMjE2NgQCR0Nj4lQBAORgLgo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>VIDEO DENOISING USING RECURRENT NEURAL NETWORK WITH GATED RECURRENT UNIT</title><source>esp@cenet</source><creator>Pinsky, Gil ; Shalom, Itai Ben</creator><creatorcontrib>Pinsky, Gil ; Shalom, Itai Ben</creatorcontrib><description>A method of denoising a video includes: capturing a plurality of frames of the video; inputting raw data from the frames into a recurrent neural network, said recurrent neural network including a gated recurrent unit; outputting a first denoised frame from the recurrent neural network while maintaining vectors corresponding to the first denoised frame in a memory of the recurrent neural network; and, for each subsequent frame of the video, inputting raw data from the frame and the vectors from the memory into the recurrent neural network, while applying the gated recurrent unit in order to selectively remove vectors from consideration of the neural network, and outputting subsequent denoised frames from the recurrent neural network, while storing vectors from the denoised frame in the memory.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241003&amp;DB=EPODOC&amp;CC=US&amp;NR=2024331111A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241003&amp;DB=EPODOC&amp;CC=US&amp;NR=2024331111A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Pinsky, Gil</creatorcontrib><creatorcontrib>Shalom, Itai Ben</creatorcontrib><title>VIDEO DENOISING USING RECURRENT NEURAL NETWORK WITH GATED RECURRENT UNIT</title><description>A method of denoising a video includes: capturing a plurality of frames of the video; inputting raw data from the frames into a recurrent neural network, said recurrent neural network including a gated recurrent unit; outputting a first denoised frame from the recurrent neural network while maintaining vectors corresponding to the first denoised frame in a memory of the recurrent neural network; and, for each subsequent frame of the video, inputting raw data from the frame and the vectors from the memory into the recurrent neural network, while applying the gated recurrent unit in order to selectively remove vectors from consideration of the neural network, and outputting subsequent denoised frames from the recurrent neural network, while storing vectors from the denoised frame in the memory.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAI83Rx9VdwcfXz9wz29HNXCAWTQa7OoUFBrn4hCn6uoUGOPkAqJNw_yFsh3DPEQ8HdMcTVBUlNqJ9nCA8Da1piTnEqL5TmZlB2cw1x9tBNLciPTy0uSExOzUstiQ8NNjIwMjE2NgQCR0Nj4lQBAORgLgo</recordid><startdate>20241003</startdate><enddate>20241003</enddate><creator>Pinsky, Gil</creator><creator>Shalom, Itai Ben</creator><scope>EVB</scope></search><sort><creationdate>20241003</creationdate><title>VIDEO DENOISING USING RECURRENT NEURAL NETWORK WITH GATED RECURRENT UNIT</title><author>Pinsky, Gil ; Shalom, Itai Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024331111A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Pinsky, Gil</creatorcontrib><creatorcontrib>Shalom, Itai Ben</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pinsky, Gil</au><au>Shalom, Itai Ben</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>VIDEO DENOISING USING RECURRENT NEURAL NETWORK WITH GATED RECURRENT UNIT</title><date>2024-10-03</date><risdate>2024</risdate><abstract>A method of denoising a video includes: capturing a plurality of frames of the video; inputting raw data from the frames into a recurrent neural network, said recurrent neural network including a gated recurrent unit; outputting a first denoised frame from the recurrent neural network while maintaining vectors corresponding to the first denoised frame in a memory of the recurrent neural network; and, for each subsequent frame of the video, inputting raw data from the frame and the vectors from the memory into the recurrent neural network, while applying the gated recurrent unit in order to selectively remove vectors from consideration of the neural network, and outputting subsequent denoised frames from the recurrent neural network, while storing vectors from the denoised frame in the memory.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024331111A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title VIDEO DENOISING USING RECURRENT NEURAL NETWORK WITH GATED RECURRENT UNIT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Pinsky,%20Gil&rft.date=2024-10-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024331111A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true