Systems and Methods for Player and Team Modelling and Prediction in Sports and Games
A system and method are provided for processing game data to generate predictions for hypothetical or real future games. The method includes receiving input data comprising at least one of: i) historical data for one or more previous games, comprising box score information, or ii) play-by-play game...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | DAVIS, Michael John SCHULTE, Oliver Norbert GAMBOA HIGUERA, Juan Camilo JAVAN ROSHTKHARI, Mehrsan |
description | A system and method are provided for processing game data to generate predictions for hypothetical or real future games. The method includes receiving input data comprising at least one of: i) historical data for one or more previous games, comprising box score information, or ii) play-by-play game data for one or more previous games; and transforming the input data into an abstraction space in which the abstraction space provides an abstraction comprising a numerical representation of player and/or team attributes. The method also includes mapping the numerical representation into one or more predictions of attributes of the games using at least one machine learning technique; and providing output data comprising the one or more predictions of attributes of the games. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024303509A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024303509A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024303509A13</originalsourceid><addsrcrecordid>eNqNjLsKAjEQANNYiPoPC9ZCvGhhKeKjOThIrI_lsqeBvMimub8XTj_AamAYZimMnrhSYMBooaX6TpZhTAU6jxOVWRvCAG2y5L2Lr1l1hawbqksRXASdU6nfxR0D8VosRvRMmx9XYnu7mstjRzn1xBkHilT7p25kc1BSHeXpvFf_VR_qtziV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Systems and Methods for Player and Team Modelling and Prediction in Sports and Games</title><source>esp@cenet</source><creator>DAVIS, Michael John ; SCHULTE, Oliver Norbert ; GAMBOA HIGUERA, Juan Camilo ; JAVAN ROSHTKHARI, Mehrsan</creator><creatorcontrib>DAVIS, Michael John ; SCHULTE, Oliver Norbert ; GAMBOA HIGUERA, Juan Camilo ; JAVAN ROSHTKHARI, Mehrsan</creatorcontrib><description>A system and method are provided for processing game data to generate predictions for hypothetical or real future games. The method includes receiving input data comprising at least one of: i) historical data for one or more previous games, comprising box score information, or ii) play-by-play game data for one or more previous games; and transforming the input data into an abstraction space in which the abstraction space provides an abstraction comprising a numerical representation of player and/or team attributes. The method also includes mapping the numerical representation into one or more predictions of attributes of the games using at least one machine learning technique; and providing output data comprising the one or more predictions of attributes of the games.</description><language>eng</language><subject>CALCULATING ; CHECKING-DEVICES ; COIN-FREED OR LIKE APPARATUS ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240912&DB=EPODOC&CC=US&NR=2024303509A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25568,76551</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240912&DB=EPODOC&CC=US&NR=2024303509A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DAVIS, Michael John</creatorcontrib><creatorcontrib>SCHULTE, Oliver Norbert</creatorcontrib><creatorcontrib>GAMBOA HIGUERA, Juan Camilo</creatorcontrib><creatorcontrib>JAVAN ROSHTKHARI, Mehrsan</creatorcontrib><title>Systems and Methods for Player and Team Modelling and Prediction in Sports and Games</title><description>A system and method are provided for processing game data to generate predictions for hypothetical or real future games. The method includes receiving input data comprising at least one of: i) historical data for one or more previous games, comprising box score information, or ii) play-by-play game data for one or more previous games; and transforming the input data into an abstraction space in which the abstraction space provides an abstraction comprising a numerical representation of player and/or team attributes. The method also includes mapping the numerical representation into one or more predictions of attributes of the games using at least one machine learning technique; and providing output data comprising the one or more predictions of attributes of the games.</description><subject>CALCULATING</subject><subject>CHECKING-DEVICES</subject><subject>COIN-FREED OR LIKE APPARATUS</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLsKAjEQANNYiPoPC9ZCvGhhKeKjOThIrI_lsqeBvMimub8XTj_AamAYZimMnrhSYMBooaX6TpZhTAU6jxOVWRvCAG2y5L2Lr1l1hawbqksRXASdU6nfxR0D8VosRvRMmx9XYnu7mstjRzn1xBkHilT7p25kc1BSHeXpvFf_VR_qtziV</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>DAVIS, Michael John</creator><creator>SCHULTE, Oliver Norbert</creator><creator>GAMBOA HIGUERA, Juan Camilo</creator><creator>JAVAN ROSHTKHARI, Mehrsan</creator><scope>EVB</scope></search><sort><creationdate>20240912</creationdate><title>Systems and Methods for Player and Team Modelling and Prediction in Sports and Games</title><author>DAVIS, Michael John ; SCHULTE, Oliver Norbert ; GAMBOA HIGUERA, Juan Camilo ; JAVAN ROSHTKHARI, Mehrsan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024303509A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>CHECKING-DEVICES</topic><topic>COIN-FREED OR LIKE APPARATUS</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DAVIS, Michael John</creatorcontrib><creatorcontrib>SCHULTE, Oliver Norbert</creatorcontrib><creatorcontrib>GAMBOA HIGUERA, Juan Camilo</creatorcontrib><creatorcontrib>JAVAN ROSHTKHARI, Mehrsan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DAVIS, Michael John</au><au>SCHULTE, Oliver Norbert</au><au>GAMBOA HIGUERA, Juan Camilo</au><au>JAVAN ROSHTKHARI, Mehrsan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Systems and Methods for Player and Team Modelling and Prediction in Sports and Games</title><date>2024-09-12</date><risdate>2024</risdate><abstract>A system and method are provided for processing game data to generate predictions for hypothetical or real future games. The method includes receiving input data comprising at least one of: i) historical data for one or more previous games, comprising box score information, or ii) play-by-play game data for one or more previous games; and transforming the input data into an abstraction space in which the abstraction space provides an abstraction comprising a numerical representation of player and/or team attributes. The method also includes mapping the numerical representation into one or more predictions of attributes of the games using at least one machine learning technique; and providing output data comprising the one or more predictions of attributes of the games.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024303509A1 |
source | esp@cenet |
subjects | CALCULATING CHECKING-DEVICES COIN-FREED OR LIKE APPARATUS COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Systems and Methods for Player and Team Modelling and Prediction in Sports and Games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DAVIS,%20Michael%20John&rft.date=2024-09-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024303509A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |