Systems and Methods for Player and Team Modelling and Prediction in Sports and Games

A system and method are provided for processing game data to generate predictions for hypothetical or real future games. The method includes receiving input data comprising at least one of: i) historical data for one or more previous games, comprising box score information, or ii) play-by-play game...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DAVIS, Michael John, SCHULTE, Oliver Norbert, GAMBOA HIGUERA, Juan Camilo, JAVAN ROSHTKHARI, Mehrsan
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DAVIS, Michael John
SCHULTE, Oliver Norbert
GAMBOA HIGUERA, Juan Camilo
JAVAN ROSHTKHARI, Mehrsan
description A system and method are provided for processing game data to generate predictions for hypothetical or real future games. The method includes receiving input data comprising at least one of: i) historical data for one or more previous games, comprising box score information, or ii) play-by-play game data for one or more previous games; and transforming the input data into an abstraction space in which the abstraction space provides an abstraction comprising a numerical representation of player and/or team attributes. The method also includes mapping the numerical representation into one or more predictions of attributes of the games using at least one machine learning technique; and providing output data comprising the one or more predictions of attributes of the games.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024303509A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024303509A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024303509A13</originalsourceid><addsrcrecordid>eNqNjLsKAjEQANNYiPoPC9ZCvGhhKeKjOThIrI_lsqeBvMimub8XTj_AamAYZimMnrhSYMBooaX6TpZhTAU6jxOVWRvCAG2y5L2Lr1l1hawbqksRXASdU6nfxR0D8VosRvRMmx9XYnu7mstjRzn1xBkHilT7p25kc1BSHeXpvFf_VR_qtziV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Systems and Methods for Player and Team Modelling and Prediction in Sports and Games</title><source>esp@cenet</source><creator>DAVIS, Michael John ; SCHULTE, Oliver Norbert ; GAMBOA HIGUERA, Juan Camilo ; JAVAN ROSHTKHARI, Mehrsan</creator><creatorcontrib>DAVIS, Michael John ; SCHULTE, Oliver Norbert ; GAMBOA HIGUERA, Juan Camilo ; JAVAN ROSHTKHARI, Mehrsan</creatorcontrib><description>A system and method are provided for processing game data to generate predictions for hypothetical or real future games. The method includes receiving input data comprising at least one of: i) historical data for one or more previous games, comprising box score information, or ii) play-by-play game data for one or more previous games; and transforming the input data into an abstraction space in which the abstraction space provides an abstraction comprising a numerical representation of player and/or team attributes. The method also includes mapping the numerical representation into one or more predictions of attributes of the games using at least one machine learning technique; and providing output data comprising the one or more predictions of attributes of the games.</description><language>eng</language><subject>CALCULATING ; CHECKING-DEVICES ; COIN-FREED OR LIKE APPARATUS ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240912&amp;DB=EPODOC&amp;CC=US&amp;NR=2024303509A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25568,76551</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240912&amp;DB=EPODOC&amp;CC=US&amp;NR=2024303509A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DAVIS, Michael John</creatorcontrib><creatorcontrib>SCHULTE, Oliver Norbert</creatorcontrib><creatorcontrib>GAMBOA HIGUERA, Juan Camilo</creatorcontrib><creatorcontrib>JAVAN ROSHTKHARI, Mehrsan</creatorcontrib><title>Systems and Methods for Player and Team Modelling and Prediction in Sports and Games</title><description>A system and method are provided for processing game data to generate predictions for hypothetical or real future games. The method includes receiving input data comprising at least one of: i) historical data for one or more previous games, comprising box score information, or ii) play-by-play game data for one or more previous games; and transforming the input data into an abstraction space in which the abstraction space provides an abstraction comprising a numerical representation of player and/or team attributes. The method also includes mapping the numerical representation into one or more predictions of attributes of the games using at least one machine learning technique; and providing output data comprising the one or more predictions of attributes of the games.</description><subject>CALCULATING</subject><subject>CHECKING-DEVICES</subject><subject>COIN-FREED OR LIKE APPARATUS</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLsKAjEQANNYiPoPC9ZCvGhhKeKjOThIrI_lsqeBvMimub8XTj_AamAYZimMnrhSYMBooaX6TpZhTAU6jxOVWRvCAG2y5L2Lr1l1hawbqksRXASdU6nfxR0D8VosRvRMmx9XYnu7mstjRzn1xBkHilT7p25kc1BSHeXpvFf_VR_qtziV</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>DAVIS, Michael John</creator><creator>SCHULTE, Oliver Norbert</creator><creator>GAMBOA HIGUERA, Juan Camilo</creator><creator>JAVAN ROSHTKHARI, Mehrsan</creator><scope>EVB</scope></search><sort><creationdate>20240912</creationdate><title>Systems and Methods for Player and Team Modelling and Prediction in Sports and Games</title><author>DAVIS, Michael John ; SCHULTE, Oliver Norbert ; GAMBOA HIGUERA, Juan Camilo ; JAVAN ROSHTKHARI, Mehrsan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024303509A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>CHECKING-DEVICES</topic><topic>COIN-FREED OR LIKE APPARATUS</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DAVIS, Michael John</creatorcontrib><creatorcontrib>SCHULTE, Oliver Norbert</creatorcontrib><creatorcontrib>GAMBOA HIGUERA, Juan Camilo</creatorcontrib><creatorcontrib>JAVAN ROSHTKHARI, Mehrsan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DAVIS, Michael John</au><au>SCHULTE, Oliver Norbert</au><au>GAMBOA HIGUERA, Juan Camilo</au><au>JAVAN ROSHTKHARI, Mehrsan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Systems and Methods for Player and Team Modelling and Prediction in Sports and Games</title><date>2024-09-12</date><risdate>2024</risdate><abstract>A system and method are provided for processing game data to generate predictions for hypothetical or real future games. The method includes receiving input data comprising at least one of: i) historical data for one or more previous games, comprising box score information, or ii) play-by-play game data for one or more previous games; and transforming the input data into an abstraction space in which the abstraction space provides an abstraction comprising a numerical representation of player and/or team attributes. The method also includes mapping the numerical representation into one or more predictions of attributes of the games using at least one machine learning technique; and providing output data comprising the one or more predictions of attributes of the games.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024303509A1
source esp@cenet
subjects CALCULATING
CHECKING-DEVICES
COIN-FREED OR LIKE APPARATUS
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Systems and Methods for Player and Team Modelling and Prediction in Sports and Games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DAVIS,%20Michael%20John&rft.date=2024-09-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024303509A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true