CHUNK-WISE ATTENTION FOR LONGFORM ASR
A method includes receiving training data including a corpus of multilingual unspoken textual utterances, a corpus of multilingual un-transcribed non-synthetic speech utterances, and a corpus of multilingual transcribed non-synthetic speech utterances. For each un-transcribed non-synthetic speech ut...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method includes receiving training data including a corpus of multilingual unspoken textual utterances, a corpus of multilingual un-transcribed non-synthetic speech utterances, and a corpus of multilingual transcribed non-synthetic speech utterances. For each un-transcribed non-synthetic speech utterance, the method includes generating a target quantized vector token and a target token index, generating contrastive context vectors from corresponding masked audio features, and deriving a contrastive loss term. The method also includes generating an alignment output, generating a first probability distribution over possible speech recognition hypotheses for the alignment output, and determining an alignment output loss term. The method also includes generating a second probability distribution over possible speech recognition hypotheses and determining a non-synthetic speech loss term. The method also includes pre-training an audio encoder based on the contrastive loss term, the alignment output loss term, and the non-synthetic speech loss term. |
---|