ARTIFICIAL-INTELLIGENCE-BASED PREDICTION OF STORAGE CAPACITIES IN WATER RESERVOIRS

Predicting the storage capacities of water reservoirs is an important planning activity for effective conservation and water release practices. However, current state-of-the-art solutions are not generalizable to all water reservoirs. Accordingly, disclosed embodiments train a machine-learning model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SATHIARAJ, David, WOOLSEY, Nicholas, ROHLI, Eric Vincent
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SATHIARAJ, David
WOOLSEY, Nicholas
ROHLI, Eric Vincent
description Predicting the storage capacities of water reservoirs is an important planning activity for effective conservation and water release practices. However, current state-of-the-art solutions are not generalizable to all water reservoirs. Accordingly, disclosed embodiments train a machine-learning model using a training dataset that comprises labeled feature vectors that each includes a time series of tuples and is labeled with the target value of at least one storage parameter for a water reservoir. Each tuple may comprise climate parameter(s), such as temperature, precipitation, and/or soil moisture, for the watershed of the water reservoir, and/or reservoir parameter(s), such as water level, water storage, storage capacity, water inflow, and/or water outflow of the water reservoir. The machine-learning model may be a recurrent neural network with long short-term memory, that is trained to predict the value of the storage parameter at least seven days into the future.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024273358A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024273358A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024273358A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQANAuDqL-w4FzQFNF1zO91IOQlMupYykSJ9FC_X9c_ACnt7x5JSjKnh1jMByVQuCWoiNzwkwNdEINO-UUIXnImgRbAocdOlamDBzhhkoCQpnkmljyspo9hudUVj8X1dqTurMp47sv0zjcy6t8-ku2G7uzh7reH3Fb_7e-oe4wuA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ARTIFICIAL-INTELLIGENCE-BASED PREDICTION OF STORAGE CAPACITIES IN WATER RESERVOIRS</title><source>esp@cenet</source><creator>SATHIARAJ, David ; WOOLSEY, Nicholas ; ROHLI, Eric Vincent</creator><creatorcontrib>SATHIARAJ, David ; WOOLSEY, Nicholas ; ROHLI, Eric Vincent</creatorcontrib><description>Predicting the storage capacities of water reservoirs is an important planning activity for effective conservation and water release practices. However, current state-of-the-art solutions are not generalizable to all water reservoirs. Accordingly, disclosed embodiments train a machine-learning model using a training dataset that comprises labeled feature vectors that each includes a time series of tuples and is labeled with the target value of at least one storage parameter for a water reservoir. Each tuple may comprise climate parameter(s), such as temperature, precipitation, and/or soil moisture, for the watershed of the water reservoir, and/or reservoir parameter(s), such as water level, water storage, storage capacity, water inflow, and/or water outflow of the water reservoir. The machine-learning model may be a recurrent neural network with long short-term memory, that is trained to predict the value of the storage parameter at least seven days into the future.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240815&amp;DB=EPODOC&amp;CC=US&amp;NR=2024273358A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240815&amp;DB=EPODOC&amp;CC=US&amp;NR=2024273358A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SATHIARAJ, David</creatorcontrib><creatorcontrib>WOOLSEY, Nicholas</creatorcontrib><creatorcontrib>ROHLI, Eric Vincent</creatorcontrib><title>ARTIFICIAL-INTELLIGENCE-BASED PREDICTION OF STORAGE CAPACITIES IN WATER RESERVOIRS</title><description>Predicting the storage capacities of water reservoirs is an important planning activity for effective conservation and water release practices. However, current state-of-the-art solutions are not generalizable to all water reservoirs. Accordingly, disclosed embodiments train a machine-learning model using a training dataset that comprises labeled feature vectors that each includes a time series of tuples and is labeled with the target value of at least one storage parameter for a water reservoir. Each tuple may comprise climate parameter(s), such as temperature, precipitation, and/or soil moisture, for the watershed of the water reservoir, and/or reservoir parameter(s), such as water level, water storage, storage capacity, water inflow, and/or water outflow of the water reservoir. The machine-learning model may be a recurrent neural network with long short-term memory, that is trained to predict the value of the storage parameter at least seven days into the future.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQANAuDqL-w4FzQFNF1zO91IOQlMupYykSJ9FC_X9c_ACnt7x5JSjKnh1jMByVQuCWoiNzwkwNdEINO-UUIXnImgRbAocdOlamDBzhhkoCQpnkmljyspo9hudUVj8X1dqTurMp47sv0zjcy6t8-ku2G7uzh7reH3Fb_7e-oe4wuA</recordid><startdate>20240815</startdate><enddate>20240815</enddate><creator>SATHIARAJ, David</creator><creator>WOOLSEY, Nicholas</creator><creator>ROHLI, Eric Vincent</creator><scope>EVB</scope></search><sort><creationdate>20240815</creationdate><title>ARTIFICIAL-INTELLIGENCE-BASED PREDICTION OF STORAGE CAPACITIES IN WATER RESERVOIRS</title><author>SATHIARAJ, David ; WOOLSEY, Nicholas ; ROHLI, Eric Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024273358A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SATHIARAJ, David</creatorcontrib><creatorcontrib>WOOLSEY, Nicholas</creatorcontrib><creatorcontrib>ROHLI, Eric Vincent</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SATHIARAJ, David</au><au>WOOLSEY, Nicholas</au><au>ROHLI, Eric Vincent</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ARTIFICIAL-INTELLIGENCE-BASED PREDICTION OF STORAGE CAPACITIES IN WATER RESERVOIRS</title><date>2024-08-15</date><risdate>2024</risdate><abstract>Predicting the storage capacities of water reservoirs is an important planning activity for effective conservation and water release practices. However, current state-of-the-art solutions are not generalizable to all water reservoirs. Accordingly, disclosed embodiments train a machine-learning model using a training dataset that comprises labeled feature vectors that each includes a time series of tuples and is labeled with the target value of at least one storage parameter for a water reservoir. Each tuple may comprise climate parameter(s), such as temperature, precipitation, and/or soil moisture, for the watershed of the water reservoir, and/or reservoir parameter(s), such as water level, water storage, storage capacity, water inflow, and/or water outflow of the water reservoir. The machine-learning model may be a recurrent neural network with long short-term memory, that is trained to predict the value of the storage parameter at least seven days into the future.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024273358A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title ARTIFICIAL-INTELLIGENCE-BASED PREDICTION OF STORAGE CAPACITIES IN WATER RESERVOIRS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SATHIARAJ,%20David&rft.date=2024-08-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024273358A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true