REDUCING FALSE POSITIVES USING CUSTOMER FEEDBACK AND MACHINE LEARNING

A method of reducing a future amount of electronic fraud alerts includes receiving data detailing a financial transaction, inputting the data into a rules-based engine that generates an electronic fraud alert, transmitting the alert to a mobile device of a customer, and receiving from the mobile dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Valero, Miriam, Craig, Bradley A, Batra, Reena, Dua, Puneit, Kramme, Timothy, Phillips, Shanna L, Flowers, Elizabeth A, Ruestman, Russell
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Valero, Miriam
Craig, Bradley A
Batra, Reena
Dua, Puneit
Kramme, Timothy
Phillips, Shanna L
Flowers, Elizabeth A
Ruestman, Russell
description A method of reducing a future amount of electronic fraud alerts includes receiving data detailing a financial transaction, inputting the data into a rules-based engine that generates an electronic fraud alert, transmitting the alert to a mobile device of a customer, and receiving from the mobile device customer feedback indicating that the alert was a false positive or otherwise erroneous. The method also includes inputting the data detailing the financial transaction into a machine learning program trained to (i) determine a reason why the false positive was generated, and (ii) then modify the rules-based engine to account for the reason why the false positive was generated, and to no longer generate electronic fraud alerts based upon (a) fact patterns similar to fact patterns of the financial transaction, or (b) data similar to the data detailing the financial transaction, to facilitate reducing an amount of future false positive fraud alerts.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024265405A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024265405A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024265405A13</originalsourceid><addsrcrecordid>eNrjZHANcnUJdfb0c1dwc_QJdlUI8A_2DPEMcw1WCA0GiTqHBof4-7oGKbi5uro4OTp7Kzj6uSj4Ojp7ePq5Kvi4Ogb5AZXxMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyMTIzNTEwNTR0Nj4lQBACnaLNM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>REDUCING FALSE POSITIVES USING CUSTOMER FEEDBACK AND MACHINE LEARNING</title><source>esp@cenet</source><creator>Valero, Miriam ; Craig, Bradley A ; Batra, Reena ; Dua, Puneit ; Kramme, Timothy ; Phillips, Shanna L ; Flowers, Elizabeth A ; Ruestman, Russell</creator><creatorcontrib>Valero, Miriam ; Craig, Bradley A ; Batra, Reena ; Dua, Puneit ; Kramme, Timothy ; Phillips, Shanna L ; Flowers, Elizabeth A ; Ruestman, Russell</creatorcontrib><description>A method of reducing a future amount of electronic fraud alerts includes receiving data detailing a financial transaction, inputting the data into a rules-based engine that generates an electronic fraud alert, transmitting the alert to a mobile device of a customer, and receiving from the mobile device customer feedback indicating that the alert was a false positive or otherwise erroneous. The method also includes inputting the data detailing the financial transaction into a machine learning program trained to (i) determine a reason why the false positive was generated, and (ii) then modify the rules-based engine to account for the reason why the false positive was generated, and to no longer generate electronic fraud alerts based upon (a) fact patterns similar to fact patterns of the financial transaction, or (b) data similar to the data detailing the financial transaction, to facilitate reducing an amount of future false positive fraud alerts.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240808&amp;DB=EPODOC&amp;CC=US&amp;NR=2024265405A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76292</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240808&amp;DB=EPODOC&amp;CC=US&amp;NR=2024265405A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Valero, Miriam</creatorcontrib><creatorcontrib>Craig, Bradley A</creatorcontrib><creatorcontrib>Batra, Reena</creatorcontrib><creatorcontrib>Dua, Puneit</creatorcontrib><creatorcontrib>Kramme, Timothy</creatorcontrib><creatorcontrib>Phillips, Shanna L</creatorcontrib><creatorcontrib>Flowers, Elizabeth A</creatorcontrib><creatorcontrib>Ruestman, Russell</creatorcontrib><title>REDUCING FALSE POSITIVES USING CUSTOMER FEEDBACK AND MACHINE LEARNING</title><description>A method of reducing a future amount of electronic fraud alerts includes receiving data detailing a financial transaction, inputting the data into a rules-based engine that generates an electronic fraud alert, transmitting the alert to a mobile device of a customer, and receiving from the mobile device customer feedback indicating that the alert was a false positive or otherwise erroneous. The method also includes inputting the data detailing the financial transaction into a machine learning program trained to (i) determine a reason why the false positive was generated, and (ii) then modify the rules-based engine to account for the reason why the false positive was generated, and to no longer generate electronic fraud alerts based upon (a) fact patterns similar to fact patterns of the financial transaction, or (b) data similar to the data detailing the financial transaction, to facilitate reducing an amount of future false positive fraud alerts.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHANcnUJdfb0c1dwc_QJdlUI8A_2DPEMcw1WCA0GiTqHBof4-7oGKbi5uro4OTp7Kzj6uSj4Ojp7ePq5Kvi4Ogb5AZXxMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyMTIzNTEwNTR0Nj4lQBACnaLNM</recordid><startdate>20240808</startdate><enddate>20240808</enddate><creator>Valero, Miriam</creator><creator>Craig, Bradley A</creator><creator>Batra, Reena</creator><creator>Dua, Puneit</creator><creator>Kramme, Timothy</creator><creator>Phillips, Shanna L</creator><creator>Flowers, Elizabeth A</creator><creator>Ruestman, Russell</creator><scope>EVB</scope></search><sort><creationdate>20240808</creationdate><title>REDUCING FALSE POSITIVES USING CUSTOMER FEEDBACK AND MACHINE LEARNING</title><author>Valero, Miriam ; Craig, Bradley A ; Batra, Reena ; Dua, Puneit ; Kramme, Timothy ; Phillips, Shanna L ; Flowers, Elizabeth A ; Ruestman, Russell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024265405A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Valero, Miriam</creatorcontrib><creatorcontrib>Craig, Bradley A</creatorcontrib><creatorcontrib>Batra, Reena</creatorcontrib><creatorcontrib>Dua, Puneit</creatorcontrib><creatorcontrib>Kramme, Timothy</creatorcontrib><creatorcontrib>Phillips, Shanna L</creatorcontrib><creatorcontrib>Flowers, Elizabeth A</creatorcontrib><creatorcontrib>Ruestman, Russell</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Valero, Miriam</au><au>Craig, Bradley A</au><au>Batra, Reena</au><au>Dua, Puneit</au><au>Kramme, Timothy</au><au>Phillips, Shanna L</au><au>Flowers, Elizabeth A</au><au>Ruestman, Russell</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>REDUCING FALSE POSITIVES USING CUSTOMER FEEDBACK AND MACHINE LEARNING</title><date>2024-08-08</date><risdate>2024</risdate><abstract>A method of reducing a future amount of electronic fraud alerts includes receiving data detailing a financial transaction, inputting the data into a rules-based engine that generates an electronic fraud alert, transmitting the alert to a mobile device of a customer, and receiving from the mobile device customer feedback indicating that the alert was a false positive or otherwise erroneous. The method also includes inputting the data detailing the financial transaction into a machine learning program trained to (i) determine a reason why the false positive was generated, and (ii) then modify the rules-based engine to account for the reason why the false positive was generated, and to no longer generate electronic fraud alerts based upon (a) fact patterns similar to fact patterns of the financial transaction, or (b) data similar to the data detailing the financial transaction, to facilitate reducing an amount of future false positive fraud alerts.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024265405A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title REDUCING FALSE POSITIVES USING CUSTOMER FEEDBACK AND MACHINE LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A51%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Valero,%20Miriam&rft.date=2024-08-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024265405A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true