FAST ADAPTATION FOR DEEP LEARNING APPLICATION THROUGH BACKPROPAGATION

Systems and methods are provided for dynamically adapting configuration setting associated with capturing content as input data for inferencing in the Multi-Access Edge Computing in a 5G telecommunication network. The inferencing is based on a use of a deep neural network. In particular, the method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHU, Yuanchao, ANANTHANARAYANAN, Ganesh
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHU, Yuanchao
ANANTHANARAYANAN, Ganesh
description Systems and methods are provided for dynamically adapting configuration setting associated with capturing content as input data for inferencing in the Multi-Access Edge Computing in a 5G telecommunication network. The inferencing is based on a use of a deep neural network. In particular, the method includes determining a gradient of a change in inference data over a change in configuration setting for capturing input data (the inference-configuration gradient). The method further updates the configuration setting based on the gradient of a change in inference data over a change in the configuration setting. The inference-configuration gradient is based on a combination of an input-configuration gradient and an inference-input gradient. The input-configuration gradient indicates a change in input data as the configuration setting value changes. The inference-input gradient indicates, as a saliency of the deep neural network, a change in inference result of the input data as the input data changes.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024256922A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024256922A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024256922A13</originalsourceid><addsrcrecordid>eNrjZHB1cwwOUXB0cQwIcQzx9PdTcPMPUnBxdQ1Q8HF1DPLz9HNXcAwI8PF0hsiGeAT5h7p7KDg5OnsHBPkHOLqDxXkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkYmRqZmlkZGjoTFxqgA3sS0W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>FAST ADAPTATION FOR DEEP LEARNING APPLICATION THROUGH BACKPROPAGATION</title><source>esp@cenet</source><creator>SHU, Yuanchao ; ANANTHANARAYANAN, Ganesh</creator><creatorcontrib>SHU, Yuanchao ; ANANTHANARAYANAN, Ganesh</creatorcontrib><description>Systems and methods are provided for dynamically adapting configuration setting associated with capturing content as input data for inferencing in the Multi-Access Edge Computing in a 5G telecommunication network. The inferencing is based on a use of a deep neural network. In particular, the method includes determining a gradient of a change in inference data over a change in configuration setting for capturing input data (the inference-configuration gradient). The method further updates the configuration setting based on the gradient of a change in inference data over a change in the configuration setting. The inference-configuration gradient is based on a combination of an input-configuration gradient and an inference-input gradient. The input-configuration gradient indicates a change in input data as the configuration setting value changes. The inference-input gradient indicates, as a saliency of the deep neural network, a change in inference result of the input data as the input data changes.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240801&amp;DB=EPODOC&amp;CC=US&amp;NR=2024256922A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240801&amp;DB=EPODOC&amp;CC=US&amp;NR=2024256922A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHU, Yuanchao</creatorcontrib><creatorcontrib>ANANTHANARAYANAN, Ganesh</creatorcontrib><title>FAST ADAPTATION FOR DEEP LEARNING APPLICATION THROUGH BACKPROPAGATION</title><description>Systems and methods are provided for dynamically adapting configuration setting associated with capturing content as input data for inferencing in the Multi-Access Edge Computing in a 5G telecommunication network. The inferencing is based on a use of a deep neural network. In particular, the method includes determining a gradient of a change in inference data over a change in configuration setting for capturing input data (the inference-configuration gradient). The method further updates the configuration setting based on the gradient of a change in inference data over a change in the configuration setting. The inference-configuration gradient is based on a combination of an input-configuration gradient and an inference-input gradient. The input-configuration gradient indicates a change in input data as the configuration setting value changes. The inference-input gradient indicates, as a saliency of the deep neural network, a change in inference result of the input data as the input data changes.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB1cwwOUXB0cQwIcQzx9PdTcPMPUnBxdQ1Q8HF1DPLz9HNXcAwI8PF0hsiGeAT5h7p7KDg5OnsHBPkHOLqDxXkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkYmRqZmlkZGjoTFxqgA3sS0W</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>SHU, Yuanchao</creator><creator>ANANTHANARAYANAN, Ganesh</creator><scope>EVB</scope></search><sort><creationdate>20240801</creationdate><title>FAST ADAPTATION FOR DEEP LEARNING APPLICATION THROUGH BACKPROPAGATION</title><author>SHU, Yuanchao ; ANANTHANARAYANAN, Ganesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024256922A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHU, Yuanchao</creatorcontrib><creatorcontrib>ANANTHANARAYANAN, Ganesh</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHU, Yuanchao</au><au>ANANTHANARAYANAN, Ganesh</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>FAST ADAPTATION FOR DEEP LEARNING APPLICATION THROUGH BACKPROPAGATION</title><date>2024-08-01</date><risdate>2024</risdate><abstract>Systems and methods are provided for dynamically adapting configuration setting associated with capturing content as input data for inferencing in the Multi-Access Edge Computing in a 5G telecommunication network. The inferencing is based on a use of a deep neural network. In particular, the method includes determining a gradient of a change in inference data over a change in configuration setting for capturing input data (the inference-configuration gradient). The method further updates the configuration setting based on the gradient of a change in inference data over a change in the configuration setting. The inference-configuration gradient is based on a combination of an input-configuration gradient and an inference-input gradient. The input-configuration gradient indicates a change in input data as the configuration setting value changes. The inference-input gradient indicates, as a saliency of the deep neural network, a change in inference result of the input data as the input data changes.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024256922A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title FAST ADAPTATION FOR DEEP LEARNING APPLICATION THROUGH BACKPROPAGATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A39%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHU,%20Yuanchao&rft.date=2024-08-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024256922A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true