UNSUPERVISED PRE-TRAINING OF NEURAL NETWORKS USING GENERATIVE MODELS

In various examples, systems and methods are disclosed relating to generating a response from image and/or video input for image/video-based artificial intelligence (AI) systems and applications. Systems and methods are disclosed for a first model (e.g., a teacher model) distilling its knowledge to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Daiqing, Kim, Seung Wook, Kreis, Karsten Julian, Kar, Amlan, Fidler, Sanja, Ling, Huan, Torralba Barriuso, Antonio
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Li, Daiqing
Kim, Seung Wook
Kreis, Karsten Julian
Kar, Amlan
Fidler, Sanja
Ling, Huan
Torralba Barriuso, Antonio
description In various examples, systems and methods are disclosed relating to generating a response from image and/or video input for image/video-based artificial intelligence (AI) systems and applications. Systems and methods are disclosed for a first model (e.g., a teacher model) distilling its knowledge to a second model (a student model). The second model receives a downstream image in a downstream task and generates at least one feature. The first model generates first features corresponding to an image which can be a real image or a synthetic image. The second model generates second features using the image as an input to the second model. Loss with respect to first features is determined. The second model is updated using the loss.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024256831A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024256831A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024256831A13</originalsourceid><addsrcrecordid>eNrjZHAJ9QsODXANCvMMdnVRCAhy1Q0JcvT08_RzV_B3U_BzDQ1y9AFSIeH-Qd7BCqHBIAl3Vz_XIMcQzzBXBV9_F1efYB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGJkamZhbOhoaEycKgBH-S0r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>UNSUPERVISED PRE-TRAINING OF NEURAL NETWORKS USING GENERATIVE MODELS</title><source>esp@cenet</source><creator>Li, Daiqing ; Kim, Seung Wook ; Kreis, Karsten Julian ; Kar, Amlan ; Fidler, Sanja ; Ling, Huan ; Torralba Barriuso, Antonio</creator><creatorcontrib>Li, Daiqing ; Kim, Seung Wook ; Kreis, Karsten Julian ; Kar, Amlan ; Fidler, Sanja ; Ling, Huan ; Torralba Barriuso, Antonio</creatorcontrib><description>In various examples, systems and methods are disclosed relating to generating a response from image and/or video input for image/video-based artificial intelligence (AI) systems and applications. Systems and methods are disclosed for a first model (e.g., a teacher model) distilling its knowledge to a second model (a student model). The second model receives a downstream image in a downstream task and generates at least one feature. The first model generates first features corresponding to an image which can be a real image or a synthetic image. The second model generates second features using the image as an input to the second model. Loss with respect to first features is determined. The second model is updated using the loss.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240801&amp;DB=EPODOC&amp;CC=US&amp;NR=2024256831A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240801&amp;DB=EPODOC&amp;CC=US&amp;NR=2024256831A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Li, Daiqing</creatorcontrib><creatorcontrib>Kim, Seung Wook</creatorcontrib><creatorcontrib>Kreis, Karsten Julian</creatorcontrib><creatorcontrib>Kar, Amlan</creatorcontrib><creatorcontrib>Fidler, Sanja</creatorcontrib><creatorcontrib>Ling, Huan</creatorcontrib><creatorcontrib>Torralba Barriuso, Antonio</creatorcontrib><title>UNSUPERVISED PRE-TRAINING OF NEURAL NETWORKS USING GENERATIVE MODELS</title><description>In various examples, systems and methods are disclosed relating to generating a response from image and/or video input for image/video-based artificial intelligence (AI) systems and applications. Systems and methods are disclosed for a first model (e.g., a teacher model) distilling its knowledge to a second model (a student model). The second model receives a downstream image in a downstream task and generates at least one feature. The first model generates first features corresponding to an image which can be a real image or a synthetic image. The second model generates second features using the image as an input to the second model. Loss with respect to first features is determined. The second model is updated using the loss.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAJ9QsODXANCvMMdnVRCAhy1Q0JcvT08_RzV_B3U_BzDQ1y9AFSIeH-Qd7BCqHBIAl3Vz_XIMcQzzBXBV9_F1efYB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGJkamZhbOhoaEycKgBH-S0r</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Li, Daiqing</creator><creator>Kim, Seung Wook</creator><creator>Kreis, Karsten Julian</creator><creator>Kar, Amlan</creator><creator>Fidler, Sanja</creator><creator>Ling, Huan</creator><creator>Torralba Barriuso, Antonio</creator><scope>EVB</scope></search><sort><creationdate>20240801</creationdate><title>UNSUPERVISED PRE-TRAINING OF NEURAL NETWORKS USING GENERATIVE MODELS</title><author>Li, Daiqing ; Kim, Seung Wook ; Kreis, Karsten Julian ; Kar, Amlan ; Fidler, Sanja ; Ling, Huan ; Torralba Barriuso, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024256831A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Daiqing</creatorcontrib><creatorcontrib>Kim, Seung Wook</creatorcontrib><creatorcontrib>Kreis, Karsten Julian</creatorcontrib><creatorcontrib>Kar, Amlan</creatorcontrib><creatorcontrib>Fidler, Sanja</creatorcontrib><creatorcontrib>Ling, Huan</creatorcontrib><creatorcontrib>Torralba Barriuso, Antonio</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Daiqing</au><au>Kim, Seung Wook</au><au>Kreis, Karsten Julian</au><au>Kar, Amlan</au><au>Fidler, Sanja</au><au>Ling, Huan</au><au>Torralba Barriuso, Antonio</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>UNSUPERVISED PRE-TRAINING OF NEURAL NETWORKS USING GENERATIVE MODELS</title><date>2024-08-01</date><risdate>2024</risdate><abstract>In various examples, systems and methods are disclosed relating to generating a response from image and/or video input for image/video-based artificial intelligence (AI) systems and applications. Systems and methods are disclosed for a first model (e.g., a teacher model) distilling its knowledge to a second model (a student model). The second model receives a downstream image in a downstream task and generates at least one feature. The first model generates first features corresponding to an image which can be a real image or a synthetic image. The second model generates second features using the image as an input to the second model. Loss with respect to first features is determined. The second model is updated using the loss.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024256831A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title UNSUPERVISED PRE-TRAINING OF NEURAL NETWORKS USING GENERATIVE MODELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Li,%20Daiqing&rft.date=2024-08-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024256831A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true