PREDICTING ACCESS REVOCATION FOR APPLICATIONS USING MACHINE LEARNING MODELS

Methods and systems are described herein for predicting user access revocation for applications. The system may retrieve, based on user identifiers, user access information and user association information. The system may generate a dataset comprising entries for the user identifiers, where the entr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: NOWAK, Matthew Louis, YOUNG, JR., Michael Anthony, McDANIEL, Christopher
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator NOWAK, Matthew Louis
YOUNG, JR., Michael Anthony
McDANIEL, Christopher
description Methods and systems are described herein for predicting user access revocation for applications. The system may retrieve, based on user identifiers, user access information and user association information. The system may generate a dataset comprising entries for the user identifiers, where the entries include the user access information and the user association information. The system may input the dataset into a machine learning model to obtain predictions as to whether each user identifier requires access to one or more functions of one or more applications. In some embodiments, the machine learning model is trained to predict required user access. In response to determining that a particular prediction does not include one or more particular functions included in the user access information for a respective user identifier, the system may revoke access to the one or more particular functions from the user identifier.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024232393A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024232393A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024232393A13</originalsourceid><addsrcrecordid>eNrjZPAOCHJ18XQO8fRzV3B0dnYNDlYIcg3zd3YM8fT3U3DzD1JwDAjw8YTwgxVCg0EKfR2dPTz9XBV8XB2D_MAC_i6uPsE8DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSQ-NNjIwMjEyNjI2NLY0dCYOFUAVDcutA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PREDICTING ACCESS REVOCATION FOR APPLICATIONS USING MACHINE LEARNING MODELS</title><source>esp@cenet</source><creator>NOWAK, Matthew Louis ; YOUNG, JR., Michael Anthony ; McDANIEL, Christopher</creator><creatorcontrib>NOWAK, Matthew Louis ; YOUNG, JR., Michael Anthony ; McDANIEL, Christopher</creatorcontrib><description>Methods and systems are described herein for predicting user access revocation for applications. The system may retrieve, based on user identifiers, user access information and user association information. The system may generate a dataset comprising entries for the user identifiers, where the entries include the user access information and the user association information. The system may input the dataset into a machine learning model to obtain predictions as to whether each user identifier requires access to one or more functions of one or more applications. In some embodiments, the machine learning model is trained to predict required user access. In response to determining that a particular prediction does not include one or more particular functions included in the user access information for a respective user identifier, the system may revoke access to the one or more particular functions from the user identifier.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240711&amp;DB=EPODOC&amp;CC=US&amp;NR=2024232393A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240711&amp;DB=EPODOC&amp;CC=US&amp;NR=2024232393A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>NOWAK, Matthew Louis</creatorcontrib><creatorcontrib>YOUNG, JR., Michael Anthony</creatorcontrib><creatorcontrib>McDANIEL, Christopher</creatorcontrib><title>PREDICTING ACCESS REVOCATION FOR APPLICATIONS USING MACHINE LEARNING MODELS</title><description>Methods and systems are described herein for predicting user access revocation for applications. The system may retrieve, based on user identifiers, user access information and user association information. The system may generate a dataset comprising entries for the user identifiers, where the entries include the user access information and the user association information. The system may input the dataset into a machine learning model to obtain predictions as to whether each user identifier requires access to one or more functions of one or more applications. In some embodiments, the machine learning model is trained to predict required user access. In response to determining that a particular prediction does not include one or more particular functions included in the user access information for a respective user identifier, the system may revoke access to the one or more particular functions from the user identifier.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAOCHJ18XQO8fRzV3B0dnYNDlYIcg3zd3YM8fT3U3DzD1JwDAjw8YTwgxVCg0EKfR2dPTz9XBV8XB2D_MAC_i6uPsE8DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSQ-NNjIwMjEyNjI2NLY0dCYOFUAVDcutA</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>NOWAK, Matthew Louis</creator><creator>YOUNG, JR., Michael Anthony</creator><creator>McDANIEL, Christopher</creator><scope>EVB</scope></search><sort><creationdate>20240711</creationdate><title>PREDICTING ACCESS REVOCATION FOR APPLICATIONS USING MACHINE LEARNING MODELS</title><author>NOWAK, Matthew Louis ; YOUNG, JR., Michael Anthony ; McDANIEL, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024232393A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>NOWAK, Matthew Louis</creatorcontrib><creatorcontrib>YOUNG, JR., Michael Anthony</creatorcontrib><creatorcontrib>McDANIEL, Christopher</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>NOWAK, Matthew Louis</au><au>YOUNG, JR., Michael Anthony</au><au>McDANIEL, Christopher</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PREDICTING ACCESS REVOCATION FOR APPLICATIONS USING MACHINE LEARNING MODELS</title><date>2024-07-11</date><risdate>2024</risdate><abstract>Methods and systems are described herein for predicting user access revocation for applications. The system may retrieve, based on user identifiers, user access information and user association information. The system may generate a dataset comprising entries for the user identifiers, where the entries include the user access information and the user association information. The system may input the dataset into a machine learning model to obtain predictions as to whether each user identifier requires access to one or more functions of one or more applications. In some embodiments, the machine learning model is trained to predict required user access. In response to determining that a particular prediction does not include one or more particular functions included in the user access information for a respective user identifier, the system may revoke access to the one or more particular functions from the user identifier.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024232393A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title PREDICTING ACCESS REVOCATION FOR APPLICATIONS USING MACHINE LEARNING MODELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=NOWAK,%20Matthew%20Louis&rft.date=2024-07-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024232393A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true