PREDICTING ACCESS REVOCATION FOR APPLICATIONS USING MACHINE LEARNING MODELS
Methods and systems are described herein for predicting user access revocation for applications. The system may retrieve, based on user identifiers, user access information and user association information. The system may generate a dataset comprising entries for the user identifiers, where the entr...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | NOWAK, Matthew Louis YOUNG, JR., Michael Anthony McDANIEL, Christopher |
description | Methods and systems are described herein for predicting user access revocation for applications. The system may retrieve, based on user identifiers, user access information and user association information. The system may generate a dataset comprising entries for the user identifiers, where the entries include the user access information and the user association information. The system may input the dataset into a machine learning model to obtain predictions as to whether each user identifier requires access to one or more functions of one or more applications. In some embodiments, the machine learning model is trained to predict required user access. In response to determining that a particular prediction does not include one or more particular functions included in the user access information for a respective user identifier, the system may revoke access to the one or more particular functions from the user identifier. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024232393A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024232393A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024232393A13</originalsourceid><addsrcrecordid>eNrjZPAOCHJ18XQO8fRzV3B0dnYNDlYIcg3zd3YM8fT3U3DzD1JwDAjw8YTwgxVCg0EKfR2dPTz9XBV8XB2D_MAC_i6uPsE8DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSQ-NNjIwMjEyNjI2NLY0dCYOFUAVDcutA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PREDICTING ACCESS REVOCATION FOR APPLICATIONS USING MACHINE LEARNING MODELS</title><source>esp@cenet</source><creator>NOWAK, Matthew Louis ; YOUNG, JR., Michael Anthony ; McDANIEL, Christopher</creator><creatorcontrib>NOWAK, Matthew Louis ; YOUNG, JR., Michael Anthony ; McDANIEL, Christopher</creatorcontrib><description>Methods and systems are described herein for predicting user access revocation for applications. The system may retrieve, based on user identifiers, user access information and user association information. The system may generate a dataset comprising entries for the user identifiers, where the entries include the user access information and the user association information. The system may input the dataset into a machine learning model to obtain predictions as to whether each user identifier requires access to one or more functions of one or more applications. In some embodiments, the machine learning model is trained to predict required user access. In response to determining that a particular prediction does not include one or more particular functions included in the user access information for a respective user identifier, the system may revoke access to the one or more particular functions from the user identifier.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240711&DB=EPODOC&CC=US&NR=2024232393A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240711&DB=EPODOC&CC=US&NR=2024232393A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>NOWAK, Matthew Louis</creatorcontrib><creatorcontrib>YOUNG, JR., Michael Anthony</creatorcontrib><creatorcontrib>McDANIEL, Christopher</creatorcontrib><title>PREDICTING ACCESS REVOCATION FOR APPLICATIONS USING MACHINE LEARNING MODELS</title><description>Methods and systems are described herein for predicting user access revocation for applications. The system may retrieve, based on user identifiers, user access information and user association information. The system may generate a dataset comprising entries for the user identifiers, where the entries include the user access information and the user association information. The system may input the dataset into a machine learning model to obtain predictions as to whether each user identifier requires access to one or more functions of one or more applications. In some embodiments, the machine learning model is trained to predict required user access. In response to determining that a particular prediction does not include one or more particular functions included in the user access information for a respective user identifier, the system may revoke access to the one or more particular functions from the user identifier.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAOCHJ18XQO8fRzV3B0dnYNDlYIcg3zd3YM8fT3U3DzD1JwDAjw8YTwgxVCg0EKfR2dPTz9XBV8XB2D_MAC_i6uPsE8DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSQ-NNjIwMjEyNjI2NLY0dCYOFUAVDcutA</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>NOWAK, Matthew Louis</creator><creator>YOUNG, JR., Michael Anthony</creator><creator>McDANIEL, Christopher</creator><scope>EVB</scope></search><sort><creationdate>20240711</creationdate><title>PREDICTING ACCESS REVOCATION FOR APPLICATIONS USING MACHINE LEARNING MODELS</title><author>NOWAK, Matthew Louis ; YOUNG, JR., Michael Anthony ; McDANIEL, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024232393A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>NOWAK, Matthew Louis</creatorcontrib><creatorcontrib>YOUNG, JR., Michael Anthony</creatorcontrib><creatorcontrib>McDANIEL, Christopher</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>NOWAK, Matthew Louis</au><au>YOUNG, JR., Michael Anthony</au><au>McDANIEL, Christopher</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PREDICTING ACCESS REVOCATION FOR APPLICATIONS USING MACHINE LEARNING MODELS</title><date>2024-07-11</date><risdate>2024</risdate><abstract>Methods and systems are described herein for predicting user access revocation for applications. The system may retrieve, based on user identifiers, user access information and user association information. The system may generate a dataset comprising entries for the user identifiers, where the entries include the user access information and the user association information. The system may input the dataset into a machine learning model to obtain predictions as to whether each user identifier requires access to one or more functions of one or more applications. In some embodiments, the machine learning model is trained to predict required user access. In response to determining that a particular prediction does not include one or more particular functions included in the user access information for a respective user identifier, the system may revoke access to the one or more particular functions from the user identifier.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024232393A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | PREDICTING ACCESS REVOCATION FOR APPLICATIONS USING MACHINE LEARNING MODELS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=NOWAK,%20Matthew%20Louis&rft.date=2024-07-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024232393A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |