USING STABLE DIFFUSION TO GENERATE SEAMLESS CONTENT TILE SETS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS

Approaches presented herein can utilize a network that learns to generate a set of content tiles that represent a type of content (e.g., texture) and satisfy a set of rules or boundary conditions. The network can be a diffusion network that learns or adapts to the boundary conditions over several it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Greenen, Alex, Kraemer, Manuel
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Greenen, Alex
Kraemer, Manuel
description Approaches presented herein can utilize a network that learns to generate a set of content tiles that represent a type of content (e.g., texture) and satisfy a set of rules or boundary conditions. The network can be a diffusion network that learns or adapts to the boundary conditions over several iterations. An indication of a type of content, along with a set of noisy prior images, can then be provided as input to the trained diffusion network, which can generate a set of content images. The content images can then be placed using a random (or other) selection process, as long as each selection satisfies the respective boundary conditions. Such an approach enables a small number of content tiles to be used for a texture region with a repeatability or pattern that may not be obviously detectable by a typical human viewer.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024221242A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024221242A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024221242A13</originalsourceid><addsrcrecordid>eNqNy8EKwjAQBNBcPIj6DwueBRv9gZhuaiDdFHd76KkUiaeihfr_2Erx7GUGHjNr1dfsqQAWcwkIuXdugkggEQokvBlBYDRlQGawkQRJQHyYVRg8_XCZz2duWLBkMJSDqarg7dd5q1aPrh_TbumN2jsUez2k4dWmceju6Znebc36qM9aZ1OY7PTf6gP1Ozfc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>USING STABLE DIFFUSION TO GENERATE SEAMLESS CONTENT TILE SETS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS</title><source>esp@cenet</source><creator>Greenen, Alex ; Kraemer, Manuel</creator><creatorcontrib>Greenen, Alex ; Kraemer, Manuel</creatorcontrib><description>Approaches presented herein can utilize a network that learns to generate a set of content tiles that represent a type of content (e.g., texture) and satisfy a set of rules or boundary conditions. The network can be a diffusion network that learns or adapts to the boundary conditions over several iterations. An indication of a type of content, along with a set of noisy prior images, can then be provided as input to the trained diffusion network, which can generate a set of content images. The content images can then be placed using a random (or other) selection process, as long as each selection satisfies the respective boundary conditions. Such an approach enables a small number of content tiles to be used for a texture region with a repeatability or pattern that may not be obviously detectable by a typical human viewer.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240704&amp;DB=EPODOC&amp;CC=US&amp;NR=2024221242A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240704&amp;DB=EPODOC&amp;CC=US&amp;NR=2024221242A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Greenen, Alex</creatorcontrib><creatorcontrib>Kraemer, Manuel</creatorcontrib><title>USING STABLE DIFFUSION TO GENERATE SEAMLESS CONTENT TILE SETS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS</title><description>Approaches presented herein can utilize a network that learns to generate a set of content tiles that represent a type of content (e.g., texture) and satisfy a set of rules or boundary conditions. The network can be a diffusion network that learns or adapts to the boundary conditions over several iterations. An indication of a type of content, along with a set of noisy prior images, can then be provided as input to the trained diffusion network, which can generate a set of content images. The content images can then be placed using a random (or other) selection process, as long as each selection satisfies the respective boundary conditions. Such an approach enables a small number of content tiles to be used for a texture region with a repeatability or pattern that may not be obviously detectable by a typical human viewer.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy8EKwjAQBNBcPIj6DwueBRv9gZhuaiDdFHd76KkUiaeihfr_2Erx7GUGHjNr1dfsqQAWcwkIuXdugkggEQokvBlBYDRlQGawkQRJQHyYVRg8_XCZz2duWLBkMJSDqarg7dd5q1aPrh_TbumN2jsUez2k4dWmceju6Znebc36qM9aZ1OY7PTf6gP1Ozfc</recordid><startdate>20240704</startdate><enddate>20240704</enddate><creator>Greenen, Alex</creator><creator>Kraemer, Manuel</creator><scope>EVB</scope></search><sort><creationdate>20240704</creationdate><title>USING STABLE DIFFUSION TO GENERATE SEAMLESS CONTENT TILE SETS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS</title><author>Greenen, Alex ; Kraemer, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024221242A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Greenen, Alex</creatorcontrib><creatorcontrib>Kraemer, Manuel</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Greenen, Alex</au><au>Kraemer, Manuel</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>USING STABLE DIFFUSION TO GENERATE SEAMLESS CONTENT TILE SETS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS</title><date>2024-07-04</date><risdate>2024</risdate><abstract>Approaches presented herein can utilize a network that learns to generate a set of content tiles that represent a type of content (e.g., texture) and satisfy a set of rules or boundary conditions. The network can be a diffusion network that learns or adapts to the boundary conditions over several iterations. An indication of a type of content, along with a set of noisy prior images, can then be provided as input to the trained diffusion network, which can generate a set of content images. The content images can then be placed using a random (or other) selection process, as long as each selection satisfies the respective boundary conditions. Such an approach enables a small number of content tiles to be used for a texture region with a repeatability or pattern that may not be obviously detectable by a typical human viewer.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024221242A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title USING STABLE DIFFUSION TO GENERATE SEAMLESS CONTENT TILE SETS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Greenen,%20Alex&rft.date=2024-07-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024221242A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true