Machine-Learned Language Models Which Generate Intermediate Textual Analysis in Service of Contextual Text Generation

The present disclosure is directed to systems and methods that include and/or leverage one or more machine-learned language models that generate intermediate textual analysis (e.g., including usage of structural tools such as APIs) in service of contextual text generation. For example, a computing s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: De Freitas Adiwardana, Daniel, Shazeer, Noam
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator De Freitas Adiwardana, Daniel
Shazeer, Noam
description The present disclosure is directed to systems and methods that include and/or leverage one or more machine-learned language models that generate intermediate textual analysis (e.g., including usage of structural tools such as APIs) in service of contextual text generation. For example, a computing system can obtain a contextual text string that includes one or more contextual text tokens. The computing system can process the contextual text string with the machine-learned language model to generate one or more intermediate text strings that include one or more intermediate text tokens. The computing system can process the one or more intermediate text strings with the machine-learned language model to generate an output text string comprising one or more output text tokens. The one or more intermediate text strings can include textual analysis of the contextual text string that supports the output text string.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024220734A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024220734A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024220734A13</originalsourceid><addsrcrecordid>eNqNzE0LgkAUhWE3LaL6DxdaCzYKrUX6Al1ptJTLeNWB6Y7MjFH_PqXatzq88HCWwVig7BVTmBNapgZy5G7EjqAwDWkHt17JHk7EZNETXNiTvVOj5qjo6UfUkDLql1MOFENJ9qEkgWkhMxP-iFn-TpThdbBoUTvafHcVbI-HKjuHNJia3IByor6-liISiRDRPk7SXfyfegN4skWC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine-Learned Language Models Which Generate Intermediate Textual Analysis in Service of Contextual Text Generation</title><source>esp@cenet</source><creator>De Freitas Adiwardana, Daniel ; Shazeer, Noam</creator><creatorcontrib>De Freitas Adiwardana, Daniel ; Shazeer, Noam</creatorcontrib><description>The present disclosure is directed to systems and methods that include and/or leverage one or more machine-learned language models that generate intermediate textual analysis (e.g., including usage of structural tools such as APIs) in service of contextual text generation. For example, a computing system can obtain a contextual text string that includes one or more contextual text tokens. The computing system can process the contextual text string with the machine-learned language model to generate one or more intermediate text strings that include one or more intermediate text tokens. The computing system can process the one or more intermediate text strings with the machine-learned language model to generate an output text string comprising one or more output text tokens. The one or more intermediate text strings can include textual analysis of the contextual text string that supports the output text string.</description><language>eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240704&amp;DB=EPODOC&amp;CC=US&amp;NR=2024220734A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240704&amp;DB=EPODOC&amp;CC=US&amp;NR=2024220734A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>De Freitas Adiwardana, Daniel</creatorcontrib><creatorcontrib>Shazeer, Noam</creatorcontrib><title>Machine-Learned Language Models Which Generate Intermediate Textual Analysis in Service of Contextual Text Generation</title><description>The present disclosure is directed to systems and methods that include and/or leverage one or more machine-learned language models that generate intermediate textual analysis (e.g., including usage of structural tools such as APIs) in service of contextual text generation. For example, a computing system can obtain a contextual text string that includes one or more contextual text tokens. The computing system can process the contextual text string with the machine-learned language model to generate one or more intermediate text strings that include one or more intermediate text tokens. The computing system can process the one or more intermediate text strings with the machine-learned language model to generate an output text string comprising one or more output text tokens. The one or more intermediate text strings can include textual analysis of the contextual text string that supports the output text string.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzE0LgkAUhWE3LaL6DxdaCzYKrUX6Al1ptJTLeNWB6Y7MjFH_PqXatzq88HCWwVig7BVTmBNapgZy5G7EjqAwDWkHt17JHk7EZNETXNiTvVOj5qjo6UfUkDLql1MOFENJ9qEkgWkhMxP-iFn-TpThdbBoUTvafHcVbI-HKjuHNJia3IByor6-liISiRDRPk7SXfyfegN4skWC</recordid><startdate>20240704</startdate><enddate>20240704</enddate><creator>De Freitas Adiwardana, Daniel</creator><creator>Shazeer, Noam</creator><scope>EVB</scope></search><sort><creationdate>20240704</creationdate><title>Machine-Learned Language Models Which Generate Intermediate Textual Analysis in Service of Contextual Text Generation</title><author>De Freitas Adiwardana, Daniel ; Shazeer, Noam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024220734A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>De Freitas Adiwardana, Daniel</creatorcontrib><creatorcontrib>Shazeer, Noam</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Freitas Adiwardana, Daniel</au><au>Shazeer, Noam</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine-Learned Language Models Which Generate Intermediate Textual Analysis in Service of Contextual Text Generation</title><date>2024-07-04</date><risdate>2024</risdate><abstract>The present disclosure is directed to systems and methods that include and/or leverage one or more machine-learned language models that generate intermediate textual analysis (e.g., including usage of structural tools such as APIs) in service of contextual text generation. For example, a computing system can obtain a contextual text string that includes one or more contextual text tokens. The computing system can process the contextual text string with the machine-learned language model to generate one or more intermediate text strings that include one or more intermediate text tokens. The computing system can process the one or more intermediate text strings with the machine-learned language model to generate an output text string comprising one or more output text tokens. The one or more intermediate text strings can include textual analysis of the contextual text string that supports the output text string.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024220734A1
source esp@cenet
subjects ACOUSTICS
CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title Machine-Learned Language Models Which Generate Intermediate Textual Analysis in Service of Contextual Text Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=De%20Freitas%20Adiwardana,%20Daniel&rft.date=2024-07-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024220734A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true