Machine-Learned Language Models Which Generate Intermediate Textual Analysis in Service of Contextual Text Generation
The present disclosure is directed to systems and methods that include and/or leverage one or more machine-learned language models that generate intermediate textual analysis (e.g., including usage of structural tools such as APIs) in service of contextual text generation. For example, a computing s...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | De Freitas Adiwardana, Daniel Shazeer, Noam |
description | The present disclosure is directed to systems and methods that include and/or leverage one or more machine-learned language models that generate intermediate textual analysis (e.g., including usage of structural tools such as APIs) in service of contextual text generation. For example, a computing system can obtain a contextual text string that includes one or more contextual text tokens. The computing system can process the contextual text string with the machine-learned language model to generate one or more intermediate text strings that include one or more intermediate text tokens. The computing system can process the one or more intermediate text strings with the machine-learned language model to generate an output text string comprising one or more output text tokens. The one or more intermediate text strings can include textual analysis of the contextual text string that supports the output text string. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024220734A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024220734A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024220734A13</originalsourceid><addsrcrecordid>eNqNzE0LgkAUhWE3LaL6DxdaCzYKrUX6Al1ptJTLeNWB6Y7MjFH_PqXatzq88HCWwVig7BVTmBNapgZy5G7EjqAwDWkHt17JHk7EZNETXNiTvVOj5qjo6UfUkDLql1MOFENJ9qEkgWkhMxP-iFn-TpThdbBoUTvafHcVbI-HKjuHNJia3IByor6-liISiRDRPk7SXfyfegN4skWC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine-Learned Language Models Which Generate Intermediate Textual Analysis in Service of Contextual Text Generation</title><source>esp@cenet</source><creator>De Freitas Adiwardana, Daniel ; Shazeer, Noam</creator><creatorcontrib>De Freitas Adiwardana, Daniel ; Shazeer, Noam</creatorcontrib><description>The present disclosure is directed to systems and methods that include and/or leverage one or more machine-learned language models that generate intermediate textual analysis (e.g., including usage of structural tools such as APIs) in service of contextual text generation. For example, a computing system can obtain a contextual text string that includes one or more contextual text tokens. The computing system can process the contextual text string with the machine-learned language model to generate one or more intermediate text strings that include one or more intermediate text tokens. The computing system can process the one or more intermediate text strings with the machine-learned language model to generate an output text string comprising one or more output text tokens. The one or more intermediate text strings can include textual analysis of the contextual text string that supports the output text string.</description><language>eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240704&DB=EPODOC&CC=US&NR=2024220734A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240704&DB=EPODOC&CC=US&NR=2024220734A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>De Freitas Adiwardana, Daniel</creatorcontrib><creatorcontrib>Shazeer, Noam</creatorcontrib><title>Machine-Learned Language Models Which Generate Intermediate Textual Analysis in Service of Contextual Text Generation</title><description>The present disclosure is directed to systems and methods that include and/or leverage one or more machine-learned language models that generate intermediate textual analysis (e.g., including usage of structural tools such as APIs) in service of contextual text generation. For example, a computing system can obtain a contextual text string that includes one or more contextual text tokens. The computing system can process the contextual text string with the machine-learned language model to generate one or more intermediate text strings that include one or more intermediate text tokens. The computing system can process the one or more intermediate text strings with the machine-learned language model to generate an output text string comprising one or more output text tokens. The one or more intermediate text strings can include textual analysis of the contextual text string that supports the output text string.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzE0LgkAUhWE3LaL6DxdaCzYKrUX6Al1ptJTLeNWB6Y7MjFH_PqXatzq88HCWwVig7BVTmBNapgZy5G7EjqAwDWkHt17JHk7EZNETXNiTvVOj5qjo6UfUkDLql1MOFENJ9qEkgWkhMxP-iFn-TpThdbBoUTvafHcVbI-HKjuHNJia3IByor6-liISiRDRPk7SXfyfegN4skWC</recordid><startdate>20240704</startdate><enddate>20240704</enddate><creator>De Freitas Adiwardana, Daniel</creator><creator>Shazeer, Noam</creator><scope>EVB</scope></search><sort><creationdate>20240704</creationdate><title>Machine-Learned Language Models Which Generate Intermediate Textual Analysis in Service of Contextual Text Generation</title><author>De Freitas Adiwardana, Daniel ; Shazeer, Noam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024220734A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>De Freitas Adiwardana, Daniel</creatorcontrib><creatorcontrib>Shazeer, Noam</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Freitas Adiwardana, Daniel</au><au>Shazeer, Noam</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine-Learned Language Models Which Generate Intermediate Textual Analysis in Service of Contextual Text Generation</title><date>2024-07-04</date><risdate>2024</risdate><abstract>The present disclosure is directed to systems and methods that include and/or leverage one or more machine-learned language models that generate intermediate textual analysis (e.g., including usage of structural tools such as APIs) in service of contextual text generation. For example, a computing system can obtain a contextual text string that includes one or more contextual text tokens. The computing system can process the contextual text string with the machine-learned language model to generate one or more intermediate text strings that include one or more intermediate text tokens. The computing system can process the one or more intermediate text strings with the machine-learned language model to generate an output text string comprising one or more output text tokens. The one or more intermediate text strings can include textual analysis of the contextual text string that supports the output text string.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024220734A1 |
source | esp@cenet |
subjects | ACOUSTICS CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING MUSICAL INSTRUMENTS PHYSICS SPEECH ANALYSIS OR SYNTHESIS SPEECH OR AUDIO CODING OR DECODING SPEECH OR VOICE PROCESSING SPEECH RECOGNITION |
title | Machine-Learned Language Models Which Generate Intermediate Textual Analysis in Service of Contextual Text Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=De%20Freitas%20Adiwardana,%20Daniel&rft.date=2024-07-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024220734A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |