EFFICIENT QUANTUM GATE TUNING THROUGH STATISTICAL MODELING

Systems and methods for use in the implementation and/or operation of quantum information processing (QIP) systems or quantum computers, and more particularly, to benchmark-driven automation for tuning quantum computers are described. A method and a system are described for an active stabilization a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maunz, Peter Lukas Wilhem, ZIMMERMAN, Chase Parker, Widdows, Dominic
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Maunz, Peter Lukas Wilhem
ZIMMERMAN, Chase Parker
Widdows, Dominic
description Systems and methods for use in the implementation and/or operation of quantum information processing (QIP) systems or quantum computers, and more particularly, to benchmark-driven automation for tuning quantum computers are described. A method and a system are described for an active stabilization approach for efficient quantum gate tuning or calibration in quantum computers through statistical modeling that involves an iterative process in which odd population error tests and even population balance tests are used to identify which quantum gates from a failed set of quantum gates need calibration.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024211786A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024211786A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024211786A13</originalsourceid><addsrcrecordid>eNrjZLBydXPzdPZ09QtRCAx19AsJ9VVwdwxxVQgJ9fP0c1cI8QjyD3X3UAgOcQzxDA7xdHb0UfD1d3H1AUryMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyMTI0NDcwszR0Nj4lQBAHe7Kjo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>EFFICIENT QUANTUM GATE TUNING THROUGH STATISTICAL MODELING</title><source>esp@cenet</source><creator>Maunz, Peter Lukas Wilhem ; ZIMMERMAN, Chase Parker ; Widdows, Dominic</creator><creatorcontrib>Maunz, Peter Lukas Wilhem ; ZIMMERMAN, Chase Parker ; Widdows, Dominic</creatorcontrib><description>Systems and methods for use in the implementation and/or operation of quantum information processing (QIP) systems or quantum computers, and more particularly, to benchmark-driven automation for tuning quantum computers are described. A method and a system are described for an active stabilization approach for efficient quantum gate tuning or calibration in quantum computers through statistical modeling that involves an iterative process in which odd population error tests and even population balance tests are used to identify which quantum gates from a failed set of quantum gates need calibration.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240627&amp;DB=EPODOC&amp;CC=US&amp;NR=2024211786A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240627&amp;DB=EPODOC&amp;CC=US&amp;NR=2024211786A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Maunz, Peter Lukas Wilhem</creatorcontrib><creatorcontrib>ZIMMERMAN, Chase Parker</creatorcontrib><creatorcontrib>Widdows, Dominic</creatorcontrib><title>EFFICIENT QUANTUM GATE TUNING THROUGH STATISTICAL MODELING</title><description>Systems and methods for use in the implementation and/or operation of quantum information processing (QIP) systems or quantum computers, and more particularly, to benchmark-driven automation for tuning quantum computers are described. A method and a system are described for an active stabilization approach for efficient quantum gate tuning or calibration in quantum computers through statistical modeling that involves an iterative process in which odd population error tests and even population balance tests are used to identify which quantum gates from a failed set of quantum gates need calibration.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBydXPzdPZ09QtRCAx19AsJ9VVwdwxxVQgJ9fP0c1cI8QjyD3X3UAgOcQzxDA7xdHb0UfD1d3H1AUryMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyMTI0NDcwszR0Nj4lQBAHe7Kjo</recordid><startdate>20240627</startdate><enddate>20240627</enddate><creator>Maunz, Peter Lukas Wilhem</creator><creator>ZIMMERMAN, Chase Parker</creator><creator>Widdows, Dominic</creator><scope>EVB</scope></search><sort><creationdate>20240627</creationdate><title>EFFICIENT QUANTUM GATE TUNING THROUGH STATISTICAL MODELING</title><author>Maunz, Peter Lukas Wilhem ; ZIMMERMAN, Chase Parker ; Widdows, Dominic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024211786A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Maunz, Peter Lukas Wilhem</creatorcontrib><creatorcontrib>ZIMMERMAN, Chase Parker</creatorcontrib><creatorcontrib>Widdows, Dominic</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maunz, Peter Lukas Wilhem</au><au>ZIMMERMAN, Chase Parker</au><au>Widdows, Dominic</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>EFFICIENT QUANTUM GATE TUNING THROUGH STATISTICAL MODELING</title><date>2024-06-27</date><risdate>2024</risdate><abstract>Systems and methods for use in the implementation and/or operation of quantum information processing (QIP) systems or quantum computers, and more particularly, to benchmark-driven automation for tuning quantum computers are described. A method and a system are described for an active stabilization approach for efficient quantum gate tuning or calibration in quantum computers through statistical modeling that involves an iterative process in which odd population error tests and even population balance tests are used to identify which quantum gates from a failed set of quantum gates need calibration.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024211786A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title EFFICIENT QUANTUM GATE TUNING THROUGH STATISTICAL MODELING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Maunz,%20Peter%20Lukas%20Wilhem&rft.date=2024-06-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024211786A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true