MACHINE AND DEEP LEARNING TECHNIQUES FOR PREDICTING ECOLOGICAL EFFICIENCY IN SUBSTRATE PROCESSING
In some embodiments, a method includes receiving a process recipe including process recipe setpoint data. The method further includes inputting the process recipe into one or more trained machine learning models that output predicted environmental resource usage data indicative of an environmental r...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Murayama, Satomi Neville, Elizabeth Moradian, Ala Kelkar, Umesh Madhav Trejo, Orlando |
description | In some embodiments, a method includes receiving a process recipe including process recipe setpoint data. The method further includes inputting the process recipe into one or more trained machine learning models that output predicted environmental resource usage data indicative of an environmental resource consumption associated with processing a substrate in a process chamber according to the process recipe. The method further includes outputting a recommendation associated with the process recipe based at least in part on the predicted environmental resource usage data. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024210916A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024210916A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024210916A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEuDqK-w4Gz0EYROsbrpTmol5qkg1MpEifRQn1_rOADOP3D_y2z4azRshBoqaAiaqEh7YWlhkhohS8dBTDOQ-upYozfQ-gaVzPqBsgYRibBK7BA6E4heh1p1g4phFmvs8V9eExp8-sq2xqKaHdpfPVpGodbeqZ33wWVq4Mq8rI46mL_n_oAZfo0iQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE AND DEEP LEARNING TECHNIQUES FOR PREDICTING ECOLOGICAL EFFICIENCY IN SUBSTRATE PROCESSING</title><source>esp@cenet</source><creator>Murayama, Satomi ; Neville, Elizabeth ; Moradian, Ala ; Kelkar, Umesh Madhav ; Trejo, Orlando</creator><creatorcontrib>Murayama, Satomi ; Neville, Elizabeth ; Moradian, Ala ; Kelkar, Umesh Madhav ; Trejo, Orlando</creatorcontrib><description>In some embodiments, a method includes receiving a process recipe including process recipe setpoint data. The method further includes inputting the process recipe into one or more trained machine learning models that output predicted environmental resource usage data indicative of an environmental resource consumption associated with processing a substrate in a process chamber according to the process recipe. The method further includes outputting a recommendation associated with the process recipe based at least in part on the predicted environmental resource usage data.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; COUNTING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240627&DB=EPODOC&CC=US&NR=2024210916A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240627&DB=EPODOC&CC=US&NR=2024210916A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Murayama, Satomi</creatorcontrib><creatorcontrib>Neville, Elizabeth</creatorcontrib><creatorcontrib>Moradian, Ala</creatorcontrib><creatorcontrib>Kelkar, Umesh Madhav</creatorcontrib><creatorcontrib>Trejo, Orlando</creatorcontrib><title>MACHINE AND DEEP LEARNING TECHNIQUES FOR PREDICTING ECOLOGICAL EFFICIENCY IN SUBSTRATE PROCESSING</title><description>In some embodiments, a method includes receiving a process recipe including process recipe setpoint data. The method further includes inputting the process recipe into one or more trained machine learning models that output predicted environmental resource usage data indicative of an environmental resource consumption associated with processing a substrate in a process chamber according to the process recipe. The method further includes outputting a recommendation associated with the process recipe based at least in part on the predicted environmental resource usage data.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEuDqK-w4Gz0EYROsbrpTmol5qkg1MpEifRQn1_rOADOP3D_y2z4azRshBoqaAiaqEh7YWlhkhohS8dBTDOQ-upYozfQ-gaVzPqBsgYRibBK7BA6E4heh1p1g4phFmvs8V9eExp8-sq2xqKaHdpfPVpGodbeqZ33wWVq4Mq8rI46mL_n_oAZfo0iQ</recordid><startdate>20240627</startdate><enddate>20240627</enddate><creator>Murayama, Satomi</creator><creator>Neville, Elizabeth</creator><creator>Moradian, Ala</creator><creator>Kelkar, Umesh Madhav</creator><creator>Trejo, Orlando</creator><scope>EVB</scope></search><sort><creationdate>20240627</creationdate><title>MACHINE AND DEEP LEARNING TECHNIQUES FOR PREDICTING ECOLOGICAL EFFICIENCY IN SUBSTRATE PROCESSING</title><author>Murayama, Satomi ; Neville, Elizabeth ; Moradian, Ala ; Kelkar, Umesh Madhav ; Trejo, Orlando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024210916A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>Murayama, Satomi</creatorcontrib><creatorcontrib>Neville, Elizabeth</creatorcontrib><creatorcontrib>Moradian, Ala</creatorcontrib><creatorcontrib>Kelkar, Umesh Madhav</creatorcontrib><creatorcontrib>Trejo, Orlando</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Murayama, Satomi</au><au>Neville, Elizabeth</au><au>Moradian, Ala</au><au>Kelkar, Umesh Madhav</au><au>Trejo, Orlando</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE AND DEEP LEARNING TECHNIQUES FOR PREDICTING ECOLOGICAL EFFICIENCY IN SUBSTRATE PROCESSING</title><date>2024-06-27</date><risdate>2024</risdate><abstract>In some embodiments, a method includes receiving a process recipe including process recipe setpoint data. The method further includes inputting the process recipe into one or more trained machine learning models that output predicted environmental resource usage data indicative of an environmental resource consumption associated with processing a substrate in a process chamber according to the process recipe. The method further includes outputting a recommendation associated with the process recipe based at least in part on the predicted environmental resource usage data.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024210916A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONTROL OR REGULATING SYSTEMS IN GENERAL CONTROLLING COUNTING FUNCTIONAL ELEMENTS OF SUCH SYSTEMS MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS PHYSICS REGULATING |
title | MACHINE AND DEEP LEARNING TECHNIQUES FOR PREDICTING ECOLOGICAL EFFICIENCY IN SUBSTRATE PROCESSING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Murayama,%20Satomi&rft.date=2024-06-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024210916A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |