MACHINE AND DEEP LEARNING TECHNIQUES FOR PREDICTING ECOLOGICAL EFFICIENCY IN SUBSTRATE PROCESSING

In some embodiments, a method includes receiving a process recipe including process recipe setpoint data. The method further includes inputting the process recipe into one or more trained machine learning models that output predicted environmental resource usage data indicative of an environmental r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Murayama, Satomi, Neville, Elizabeth, Moradian, Ala, Kelkar, Umesh Madhav, Trejo, Orlando
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Murayama, Satomi
Neville, Elizabeth
Moradian, Ala
Kelkar, Umesh Madhav
Trejo, Orlando
description In some embodiments, a method includes receiving a process recipe including process recipe setpoint data. The method further includes inputting the process recipe into one or more trained machine learning models that output predicted environmental resource usage data indicative of an environmental resource consumption associated with processing a substrate in a process chamber according to the process recipe. The method further includes outputting a recommendation associated with the process recipe based at least in part on the predicted environmental resource usage data.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024210916A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024210916A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024210916A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEuDqK-w4Gz0EYROsbrpTmol5qkg1MpEifRQn1_rOADOP3D_y2z4azRshBoqaAiaqEh7YWlhkhohS8dBTDOQ-upYozfQ-gaVzPqBsgYRibBK7BA6E4heh1p1g4phFmvs8V9eExp8-sq2xqKaHdpfPVpGodbeqZ33wWVq4Mq8rI46mL_n_oAZfo0iQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE AND DEEP LEARNING TECHNIQUES FOR PREDICTING ECOLOGICAL EFFICIENCY IN SUBSTRATE PROCESSING</title><source>esp@cenet</source><creator>Murayama, Satomi ; Neville, Elizabeth ; Moradian, Ala ; Kelkar, Umesh Madhav ; Trejo, Orlando</creator><creatorcontrib>Murayama, Satomi ; Neville, Elizabeth ; Moradian, Ala ; Kelkar, Umesh Madhav ; Trejo, Orlando</creatorcontrib><description>In some embodiments, a method includes receiving a process recipe including process recipe setpoint data. The method further includes inputting the process recipe into one or more trained machine learning models that output predicted environmental resource usage data indicative of an environmental resource consumption associated with processing a substrate in a process chamber according to the process recipe. The method further includes outputting a recommendation associated with the process recipe based at least in part on the predicted environmental resource usage data.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; COUNTING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240627&amp;DB=EPODOC&amp;CC=US&amp;NR=2024210916A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240627&amp;DB=EPODOC&amp;CC=US&amp;NR=2024210916A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Murayama, Satomi</creatorcontrib><creatorcontrib>Neville, Elizabeth</creatorcontrib><creatorcontrib>Moradian, Ala</creatorcontrib><creatorcontrib>Kelkar, Umesh Madhav</creatorcontrib><creatorcontrib>Trejo, Orlando</creatorcontrib><title>MACHINE AND DEEP LEARNING TECHNIQUES FOR PREDICTING ECOLOGICAL EFFICIENCY IN SUBSTRATE PROCESSING</title><description>In some embodiments, a method includes receiving a process recipe including process recipe setpoint data. The method further includes inputting the process recipe into one or more trained machine learning models that output predicted environmental resource usage data indicative of an environmental resource consumption associated with processing a substrate in a process chamber according to the process recipe. The method further includes outputting a recommendation associated with the process recipe based at least in part on the predicted environmental resource usage data.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEuDqK-w4Gz0EYROsbrpTmol5qkg1MpEifRQn1_rOADOP3D_y2z4azRshBoqaAiaqEh7YWlhkhohS8dBTDOQ-upYozfQ-gaVzPqBsgYRibBK7BA6E4heh1p1g4phFmvs8V9eExp8-sq2xqKaHdpfPVpGodbeqZ33wWVq4Mq8rI46mL_n_oAZfo0iQ</recordid><startdate>20240627</startdate><enddate>20240627</enddate><creator>Murayama, Satomi</creator><creator>Neville, Elizabeth</creator><creator>Moradian, Ala</creator><creator>Kelkar, Umesh Madhav</creator><creator>Trejo, Orlando</creator><scope>EVB</scope></search><sort><creationdate>20240627</creationdate><title>MACHINE AND DEEP LEARNING TECHNIQUES FOR PREDICTING ECOLOGICAL EFFICIENCY IN SUBSTRATE PROCESSING</title><author>Murayama, Satomi ; Neville, Elizabeth ; Moradian, Ala ; Kelkar, Umesh Madhav ; Trejo, Orlando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024210916A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>Murayama, Satomi</creatorcontrib><creatorcontrib>Neville, Elizabeth</creatorcontrib><creatorcontrib>Moradian, Ala</creatorcontrib><creatorcontrib>Kelkar, Umesh Madhav</creatorcontrib><creatorcontrib>Trejo, Orlando</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Murayama, Satomi</au><au>Neville, Elizabeth</au><au>Moradian, Ala</au><au>Kelkar, Umesh Madhav</au><au>Trejo, Orlando</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE AND DEEP LEARNING TECHNIQUES FOR PREDICTING ECOLOGICAL EFFICIENCY IN SUBSTRATE PROCESSING</title><date>2024-06-27</date><risdate>2024</risdate><abstract>In some embodiments, a method includes receiving a process recipe including process recipe setpoint data. The method further includes inputting the process recipe into one or more trained machine learning models that output predicted environmental resource usage data indicative of an environmental resource consumption associated with processing a substrate in a process chamber according to the process recipe. The method further includes outputting a recommendation associated with the process recipe based at least in part on the predicted environmental resource usage data.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024210916A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
COUNTING
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
PHYSICS
REGULATING
title MACHINE AND DEEP LEARNING TECHNIQUES FOR PREDICTING ECOLOGICAL EFFICIENCY IN SUBSTRATE PROCESSING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Murayama,%20Satomi&rft.date=2024-06-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024210916A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true