Machine Learning-Based Multitenant Server Application Dependency Mapping System

A multitenant server application dependency mapping system maps data flows through multitenant infrastructure components through the use of a machine learning model framework that continually learns data flow patterns across the enterprise network and predicts the state of any given server. The mult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sorensen, Kyle Scott, Maisonett, Fernando, Nodzak, Conor Mitchell Liam, Srinivas, Shreyas, Busch, Brian
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Sorensen, Kyle Scott
Maisonett, Fernando
Nodzak, Conor Mitchell Liam
Srinivas, Shreyas
Busch, Brian
description A multitenant server application dependency mapping system maps data flows through multitenant infrastructure components through the use of a machine learning model framework that continually learns data flow patterns across the enterprise network and predicts the state of any given server. The multitenant server application dependency mapping system treats the network architecture as a whole and collects data accordingly, and uses that data to compute state probabilities conditioned upon both a point in time (and the observed prior states retrieved from the historical telemetry data. This provides a way to predict the likelihood of observing a tenant state being occupied, while also accounting for variations among the activity levels of various application. To forecast future states of all infrastructure components, the transition probabilities from tenant state to tenant state are then computed through time and used as inputs to the model to provide an accurate reconstruction of the data flows through all multitenant infrastructure components.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024187311A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024187311A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024187311A13</originalsourceid><addsrcrecordid>eNqNy7sKwkAQRuE0FqK-w4B1wE0EbeMNC4NFtA7D5lcX1smwuwp5ey18AKvTfGecnWu2DyegEziIk3u-4YiO6pdPLkFYEjUIbwSqVL2znFwvtINCOogdqGbV70fNEBOe02x0Yx8x-3WSzQ_7y_aYQ_sWUdlCkNprUyyKpVmvSmMqU_6nPh6vN8U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine Learning-Based Multitenant Server Application Dependency Mapping System</title><source>esp@cenet</source><creator>Sorensen, Kyle Scott ; Maisonett, Fernando ; Nodzak, Conor Mitchell Liam ; Srinivas, Shreyas ; Busch, Brian</creator><creatorcontrib>Sorensen, Kyle Scott ; Maisonett, Fernando ; Nodzak, Conor Mitchell Liam ; Srinivas, Shreyas ; Busch, Brian</creatorcontrib><description>A multitenant server application dependency mapping system maps data flows through multitenant infrastructure components through the use of a machine learning model framework that continually learns data flow patterns across the enterprise network and predicts the state of any given server. The multitenant server application dependency mapping system treats the network architecture as a whole and collects data accordingly, and uses that data to compute state probabilities conditioned upon both a point in time (and the observed prior states retrieved from the historical telemetry data. This provides a way to predict the likelihood of observing a tenant state being occupied, while also accounting for variations among the activity levels of various application. To forecast future states of all infrastructure components, the transition probabilities from tenant state to tenant state are then computed through time and used as inputs to the model to provide an accurate reconstruction of the data flows through all multitenant infrastructure components.</description><language>eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240606&amp;DB=EPODOC&amp;CC=US&amp;NR=2024187311A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240606&amp;DB=EPODOC&amp;CC=US&amp;NR=2024187311A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sorensen, Kyle Scott</creatorcontrib><creatorcontrib>Maisonett, Fernando</creatorcontrib><creatorcontrib>Nodzak, Conor Mitchell Liam</creatorcontrib><creatorcontrib>Srinivas, Shreyas</creatorcontrib><creatorcontrib>Busch, Brian</creatorcontrib><title>Machine Learning-Based Multitenant Server Application Dependency Mapping System</title><description>A multitenant server application dependency mapping system maps data flows through multitenant infrastructure components through the use of a machine learning model framework that continually learns data flow patterns across the enterprise network and predicts the state of any given server. The multitenant server application dependency mapping system treats the network architecture as a whole and collects data accordingly, and uses that data to compute state probabilities conditioned upon both a point in time (and the observed prior states retrieved from the historical telemetry data. This provides a way to predict the likelihood of observing a tenant state being occupied, while also accounting for variations among the activity levels of various application. To forecast future states of all infrastructure components, the transition probabilities from tenant state to tenant state are then computed through time and used as inputs to the model to provide an accurate reconstruction of the data flows through all multitenant infrastructure components.</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7sKwkAQRuE0FqK-w4B1wE0EbeMNC4NFtA7D5lcX1smwuwp5ey18AKvTfGecnWu2DyegEziIk3u-4YiO6pdPLkFYEjUIbwSqVL2znFwvtINCOogdqGbV70fNEBOe02x0Yx8x-3WSzQ_7y_aYQ_sWUdlCkNprUyyKpVmvSmMqU_6nPh6vN8U</recordid><startdate>20240606</startdate><enddate>20240606</enddate><creator>Sorensen, Kyle Scott</creator><creator>Maisonett, Fernando</creator><creator>Nodzak, Conor Mitchell Liam</creator><creator>Srinivas, Shreyas</creator><creator>Busch, Brian</creator><scope>EVB</scope></search><sort><creationdate>20240606</creationdate><title>Machine Learning-Based Multitenant Server Application Dependency Mapping System</title><author>Sorensen, Kyle Scott ; Maisonett, Fernando ; Nodzak, Conor Mitchell Liam ; Srinivas, Shreyas ; Busch, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024187311A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Sorensen, Kyle Scott</creatorcontrib><creatorcontrib>Maisonett, Fernando</creatorcontrib><creatorcontrib>Nodzak, Conor Mitchell Liam</creatorcontrib><creatorcontrib>Srinivas, Shreyas</creatorcontrib><creatorcontrib>Busch, Brian</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sorensen, Kyle Scott</au><au>Maisonett, Fernando</au><au>Nodzak, Conor Mitchell Liam</au><au>Srinivas, Shreyas</au><au>Busch, Brian</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine Learning-Based Multitenant Server Application Dependency Mapping System</title><date>2024-06-06</date><risdate>2024</risdate><abstract>A multitenant server application dependency mapping system maps data flows through multitenant infrastructure components through the use of a machine learning model framework that continually learns data flow patterns across the enterprise network and predicts the state of any given server. The multitenant server application dependency mapping system treats the network architecture as a whole and collects data accordingly, and uses that data to compute state probabilities conditioned upon both a point in time (and the observed prior states retrieved from the historical telemetry data. This provides a way to predict the likelihood of observing a tenant state being occupied, while also accounting for variations among the activity levels of various application. To forecast future states of all infrastructure components, the transition probabilities from tenant state to tenant state are then computed through time and used as inputs to the model to provide an accurate reconstruction of the data flows through all multitenant infrastructure components.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024187311A1
source esp@cenet
subjects ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Machine Learning-Based Multitenant Server Application Dependency Mapping System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Sorensen,%20Kyle%20Scott&rft.date=2024-06-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024187311A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true