Machine Learning-Based Multitenant Server Application Dependency Mapping System
A multitenant server application dependency mapping system maps data flows through multitenant infrastructure components through the use of a machine learning model framework that continually learns data flow patterns across the enterprise network and predicts the state of any given server. The mult...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Sorensen, Kyle Scott Maisonett, Fernando Nodzak, Conor Mitchell Liam Srinivas, Shreyas Busch, Brian |
description | A multitenant server application dependency mapping system maps data flows through multitenant infrastructure components through the use of a machine learning model framework that continually learns data flow patterns across the enterprise network and predicts the state of any given server. The multitenant server application dependency mapping system treats the network architecture as a whole and collects data accordingly, and uses that data to compute state probabilities conditioned upon both a point in time (and the observed prior states retrieved from the historical telemetry data. This provides a way to predict the likelihood of observing a tenant state being occupied, while also accounting for variations among the activity levels of various application. To forecast future states of all infrastructure components, the transition probabilities from tenant state to tenant state are then computed through time and used as inputs to the model to provide an accurate reconstruction of the data flows through all multitenant infrastructure components. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024187311A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024187311A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024187311A13</originalsourceid><addsrcrecordid>eNqNy7sKwkAQRuE0FqK-w4B1wE0EbeMNC4NFtA7D5lcX1smwuwp5ey18AKvTfGecnWu2DyegEziIk3u-4YiO6pdPLkFYEjUIbwSqVL2znFwvtINCOogdqGbV70fNEBOe02x0Yx8x-3WSzQ_7y_aYQ_sWUdlCkNprUyyKpVmvSmMqU_6nPh6vN8U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine Learning-Based Multitenant Server Application Dependency Mapping System</title><source>esp@cenet</source><creator>Sorensen, Kyle Scott ; Maisonett, Fernando ; Nodzak, Conor Mitchell Liam ; Srinivas, Shreyas ; Busch, Brian</creator><creatorcontrib>Sorensen, Kyle Scott ; Maisonett, Fernando ; Nodzak, Conor Mitchell Liam ; Srinivas, Shreyas ; Busch, Brian</creatorcontrib><description>A multitenant server application dependency mapping system maps data flows through multitenant infrastructure components through the use of a machine learning model framework that continually learns data flow patterns across the enterprise network and predicts the state of any given server. The multitenant server application dependency mapping system treats the network architecture as a whole and collects data accordingly, and uses that data to compute state probabilities conditioned upon both a point in time (and the observed prior states retrieved from the historical telemetry data. This provides a way to predict the likelihood of observing a tenant state being occupied, while also accounting for variations among the activity levels of various application. To forecast future states of all infrastructure components, the transition probabilities from tenant state to tenant state are then computed through time and used as inputs to the model to provide an accurate reconstruction of the data flows through all multitenant infrastructure components.</description><language>eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240606&DB=EPODOC&CC=US&NR=2024187311A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240606&DB=EPODOC&CC=US&NR=2024187311A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sorensen, Kyle Scott</creatorcontrib><creatorcontrib>Maisonett, Fernando</creatorcontrib><creatorcontrib>Nodzak, Conor Mitchell Liam</creatorcontrib><creatorcontrib>Srinivas, Shreyas</creatorcontrib><creatorcontrib>Busch, Brian</creatorcontrib><title>Machine Learning-Based Multitenant Server Application Dependency Mapping System</title><description>A multitenant server application dependency mapping system maps data flows through multitenant infrastructure components through the use of a machine learning model framework that continually learns data flow patterns across the enterprise network and predicts the state of any given server. The multitenant server application dependency mapping system treats the network architecture as a whole and collects data accordingly, and uses that data to compute state probabilities conditioned upon both a point in time (and the observed prior states retrieved from the historical telemetry data. This provides a way to predict the likelihood of observing a tenant state being occupied, while also accounting for variations among the activity levels of various application. To forecast future states of all infrastructure components, the transition probabilities from tenant state to tenant state are then computed through time and used as inputs to the model to provide an accurate reconstruction of the data flows through all multitenant infrastructure components.</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7sKwkAQRuE0FqK-w4B1wE0EbeMNC4NFtA7D5lcX1smwuwp5ey18AKvTfGecnWu2DyegEziIk3u-4YiO6pdPLkFYEjUIbwSqVL2znFwvtINCOogdqGbV70fNEBOe02x0Yx8x-3WSzQ_7y_aYQ_sWUdlCkNprUyyKpVmvSmMqU_6nPh6vN8U</recordid><startdate>20240606</startdate><enddate>20240606</enddate><creator>Sorensen, Kyle Scott</creator><creator>Maisonett, Fernando</creator><creator>Nodzak, Conor Mitchell Liam</creator><creator>Srinivas, Shreyas</creator><creator>Busch, Brian</creator><scope>EVB</scope></search><sort><creationdate>20240606</creationdate><title>Machine Learning-Based Multitenant Server Application Dependency Mapping System</title><author>Sorensen, Kyle Scott ; Maisonett, Fernando ; Nodzak, Conor Mitchell Liam ; Srinivas, Shreyas ; Busch, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024187311A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Sorensen, Kyle Scott</creatorcontrib><creatorcontrib>Maisonett, Fernando</creatorcontrib><creatorcontrib>Nodzak, Conor Mitchell Liam</creatorcontrib><creatorcontrib>Srinivas, Shreyas</creatorcontrib><creatorcontrib>Busch, Brian</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sorensen, Kyle Scott</au><au>Maisonett, Fernando</au><au>Nodzak, Conor Mitchell Liam</au><au>Srinivas, Shreyas</au><au>Busch, Brian</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine Learning-Based Multitenant Server Application Dependency Mapping System</title><date>2024-06-06</date><risdate>2024</risdate><abstract>A multitenant server application dependency mapping system maps data flows through multitenant infrastructure components through the use of a machine learning model framework that continually learns data flow patterns across the enterprise network and predicts the state of any given server. The multitenant server application dependency mapping system treats the network architecture as a whole and collects data accordingly, and uses that data to compute state probabilities conditioned upon both a point in time (and the observed prior states retrieved from the historical telemetry data. This provides a way to predict the likelihood of observing a tenant state being occupied, while also accounting for variations among the activity levels of various application. To forecast future states of all infrastructure components, the transition probabilities from tenant state to tenant state are then computed through time and used as inputs to the model to provide an accurate reconstruction of the data flows through all multitenant infrastructure components.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024187311A1 |
source | esp@cenet |
subjects | ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Machine Learning-Based Multitenant Server Application Dependency Mapping System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Sorensen,%20Kyle%20Scott&rft.date=2024-06-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024187311A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |