DISTRIBUTED ACTIVE LEARNING IN NATURAL LANGUAGE PROCESSING FOR DETERMINING RESOURCE METRICS

A method includes a system for improving machine-learning-based resource allocation by calibrating resource-related sentiments used to configure a dialogue generation model and updating a prior sentiment based on a response to a generated dialogue item, including a set of processors. Embodiments may...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: NOWAK, Matthew Louis, YOUNG, JR., Michael Anthony, McDANIEL, Christopher
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator NOWAK, Matthew Louis
YOUNG, JR., Michael Anthony
McDANIEL, Christopher
description A method includes a system for improving machine-learning-based resource allocation by calibrating resource-related sentiments used to configure a dialogue generation model and updating a prior sentiment based on a response to a generated dialogue item, including a set of processors. Embodiments may also include a non-transitory, machine-readable media storing program instructions that, when executed by the set of processors, performs operations including retrieving a historical record associated with a user and a first natural language input provided by the user for a resource. Embodiments may also include determining, with a first machine learning model, an intermediate sentiment score based on the first natural language input. Embodiments may also include modifying, with the first machine learning model, the intermediate sentiment score based on the historical record to produce a new sentiment score.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024184812A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024184812A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024184812A13</originalsourceid><addsrcrecordid>eNqNjLsKwjAUQLs4iPoPF5wFEzt0vSa3MZAmcpO4OJQicRIt1P_HB36A0xnO4cyrs7Yxsd3nRBpQJXsicITsrTdgPXhMmdGBQ28yGoIjB0UxfnQbGDQl4s5-c6YYMiuCjt5LFZfV7DrcprL6cVGtW0rqsCnjoy_TOFzKvTz7HOVW1qKpGyFR7P6rXnWQM1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DISTRIBUTED ACTIVE LEARNING IN NATURAL LANGUAGE PROCESSING FOR DETERMINING RESOURCE METRICS</title><source>esp@cenet</source><creator>NOWAK, Matthew Louis ; YOUNG, JR., Michael Anthony ; McDANIEL, Christopher</creator><creatorcontrib>NOWAK, Matthew Louis ; YOUNG, JR., Michael Anthony ; McDANIEL, Christopher</creatorcontrib><description>A method includes a system for improving machine-learning-based resource allocation by calibrating resource-related sentiments used to configure a dialogue generation model and updating a prior sentiment based on a response to a generated dialogue item, including a set of processors. Embodiments may also include a non-transitory, machine-readable media storing program instructions that, when executed by the set of processors, performs operations including retrieving a historical record associated with a user and a first natural language input provided by the user for a resource. Embodiments may also include determining, with a first machine learning model, an intermediate sentiment score based on the first natural language input. Embodiments may also include modifying, with the first machine learning model, the intermediate sentiment score based on the historical record to produce a new sentiment score.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240606&amp;DB=EPODOC&amp;CC=US&amp;NR=2024184812A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240606&amp;DB=EPODOC&amp;CC=US&amp;NR=2024184812A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>NOWAK, Matthew Louis</creatorcontrib><creatorcontrib>YOUNG, JR., Michael Anthony</creatorcontrib><creatorcontrib>McDANIEL, Christopher</creatorcontrib><title>DISTRIBUTED ACTIVE LEARNING IN NATURAL LANGUAGE PROCESSING FOR DETERMINING RESOURCE METRICS</title><description>A method includes a system for improving machine-learning-based resource allocation by calibrating resource-related sentiments used to configure a dialogue generation model and updating a prior sentiment based on a response to a generated dialogue item, including a set of processors. Embodiments may also include a non-transitory, machine-readable media storing program instructions that, when executed by the set of processors, performs operations including retrieving a historical record associated with a user and a first natural language input provided by the user for a resource. Embodiments may also include determining, with a first machine learning model, an intermediate sentiment score based on the first natural language input. Embodiments may also include modifying, with the first machine learning model, the intermediate sentiment score based on the historical record to produce a new sentiment score.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLsKwjAUQLs4iPoPF5wFEzt0vSa3MZAmcpO4OJQicRIt1P_HB36A0xnO4cyrs7Yxsd3nRBpQJXsicITsrTdgPXhMmdGBQ28yGoIjB0UxfnQbGDQl4s5-c6YYMiuCjt5LFZfV7DrcprL6cVGtW0rqsCnjoy_TOFzKvTz7HOVW1qKpGyFR7P6rXnWQM1A</recordid><startdate>20240606</startdate><enddate>20240606</enddate><creator>NOWAK, Matthew Louis</creator><creator>YOUNG, JR., Michael Anthony</creator><creator>McDANIEL, Christopher</creator><scope>EVB</scope></search><sort><creationdate>20240606</creationdate><title>DISTRIBUTED ACTIVE LEARNING IN NATURAL LANGUAGE PROCESSING FOR DETERMINING RESOURCE METRICS</title><author>NOWAK, Matthew Louis ; YOUNG, JR., Michael Anthony ; McDANIEL, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024184812A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>NOWAK, Matthew Louis</creatorcontrib><creatorcontrib>YOUNG, JR., Michael Anthony</creatorcontrib><creatorcontrib>McDANIEL, Christopher</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>NOWAK, Matthew Louis</au><au>YOUNG, JR., Michael Anthony</au><au>McDANIEL, Christopher</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DISTRIBUTED ACTIVE LEARNING IN NATURAL LANGUAGE PROCESSING FOR DETERMINING RESOURCE METRICS</title><date>2024-06-06</date><risdate>2024</risdate><abstract>A method includes a system for improving machine-learning-based resource allocation by calibrating resource-related sentiments used to configure a dialogue generation model and updating a prior sentiment based on a response to a generated dialogue item, including a set of processors. Embodiments may also include a non-transitory, machine-readable media storing program instructions that, when executed by the set of processors, performs operations including retrieving a historical record associated with a user and a first natural language input provided by the user for a resource. Embodiments may also include determining, with a first machine learning model, an intermediate sentiment score based on the first natural language input. Embodiments may also include modifying, with the first machine learning model, the intermediate sentiment score based on the historical record to produce a new sentiment score.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024184812A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title DISTRIBUTED ACTIVE LEARNING IN NATURAL LANGUAGE PROCESSING FOR DETERMINING RESOURCE METRICS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=NOWAK,%20Matthew%20Louis&rft.date=2024-06-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024184812A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true