ADAPTIVELY GENERATING OUTLIER SCORES USING HISTOGRAMS

An example system includes a processor to receive a stream of records. The processor can generate an unbiased outlier score for each sample in the stream of records via a trained histogram-based outlier score model. The unbiased outlier score is unbiased for samples including dependent features usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ALLOUCHE, Yair, BILLER, Ofer Haim, FARCHI, Eitan Daniel, COHEN, Aviad, ACKERMAN, Samuel Solomon
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ALLOUCHE, Yair
BILLER, Ofer Haim
FARCHI, Eitan Daniel
COHEN, Aviad
ACKERMAN, Samuel Solomon
description An example system includes a processor to receive a stream of records. The processor can generate an unbiased outlier score for each sample in the stream of records via a trained histogram-based outlier score model. The unbiased outlier score is unbiased for samples including dependent features using feature grouping. The processor can then detect an anomaly in response to detecting that an associated unbiased outlier score of the sample is higher than a predefined threshold.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024176784A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024176784A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024176784A13</originalsourceid><addsrcrecordid>eNrjZDB1dHEMCPEMc_WJVHB39XMNcgzx9HNX8A8N8fF0DVIIdvYPcg1WCA0GCXp4Bof4uwc5-gbzMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyMTQ3MzcwsTR0Nj4lQBAL5cKRM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ADAPTIVELY GENERATING OUTLIER SCORES USING HISTOGRAMS</title><source>esp@cenet</source><creator>ALLOUCHE, Yair ; BILLER, Ofer Haim ; FARCHI, Eitan Daniel ; COHEN, Aviad ; ACKERMAN, Samuel Solomon</creator><creatorcontrib>ALLOUCHE, Yair ; BILLER, Ofer Haim ; FARCHI, Eitan Daniel ; COHEN, Aviad ; ACKERMAN, Samuel Solomon</creatorcontrib><description>An example system includes a processor to receive a stream of records. The processor can generate an unbiased outlier score for each sample in the stream of records via a trained histogram-based outlier score model. The unbiased outlier score is unbiased for samples including dependent features using feature grouping. The processor can then detect an anomaly in response to detecting that an associated unbiased outlier score of the sample is higher than a predefined threshold.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240530&amp;DB=EPODOC&amp;CC=US&amp;NR=2024176784A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240530&amp;DB=EPODOC&amp;CC=US&amp;NR=2024176784A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ALLOUCHE, Yair</creatorcontrib><creatorcontrib>BILLER, Ofer Haim</creatorcontrib><creatorcontrib>FARCHI, Eitan Daniel</creatorcontrib><creatorcontrib>COHEN, Aviad</creatorcontrib><creatorcontrib>ACKERMAN, Samuel Solomon</creatorcontrib><title>ADAPTIVELY GENERATING OUTLIER SCORES USING HISTOGRAMS</title><description>An example system includes a processor to receive a stream of records. The processor can generate an unbiased outlier score for each sample in the stream of records via a trained histogram-based outlier score model. The unbiased outlier score is unbiased for samples including dependent features using feature grouping. The processor can then detect an anomaly in response to detecting that an associated unbiased outlier score of the sample is higher than a predefined threshold.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB1dHEMCPEMc_WJVHB39XMNcgzx9HNX8A8N8fF0DVIIdvYPcg1WCA0GCXp4Bof4uwc5-gbzMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyMTQ3MzcwsTR0Nj4lQBAL5cKRM</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>ALLOUCHE, Yair</creator><creator>BILLER, Ofer Haim</creator><creator>FARCHI, Eitan Daniel</creator><creator>COHEN, Aviad</creator><creator>ACKERMAN, Samuel Solomon</creator><scope>EVB</scope></search><sort><creationdate>20240530</creationdate><title>ADAPTIVELY GENERATING OUTLIER SCORES USING HISTOGRAMS</title><author>ALLOUCHE, Yair ; BILLER, Ofer Haim ; FARCHI, Eitan Daniel ; COHEN, Aviad ; ACKERMAN, Samuel Solomon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024176784A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ALLOUCHE, Yair</creatorcontrib><creatorcontrib>BILLER, Ofer Haim</creatorcontrib><creatorcontrib>FARCHI, Eitan Daniel</creatorcontrib><creatorcontrib>COHEN, Aviad</creatorcontrib><creatorcontrib>ACKERMAN, Samuel Solomon</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ALLOUCHE, Yair</au><au>BILLER, Ofer Haim</au><au>FARCHI, Eitan Daniel</au><au>COHEN, Aviad</au><au>ACKERMAN, Samuel Solomon</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ADAPTIVELY GENERATING OUTLIER SCORES USING HISTOGRAMS</title><date>2024-05-30</date><risdate>2024</risdate><abstract>An example system includes a processor to receive a stream of records. The processor can generate an unbiased outlier score for each sample in the stream of records via a trained histogram-based outlier score model. The unbiased outlier score is unbiased for samples including dependent features using feature grouping. The processor can then detect an anomaly in response to detecting that an associated unbiased outlier score of the sample is higher than a predefined threshold.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024176784A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title ADAPTIVELY GENERATING OUTLIER SCORES USING HISTOGRAMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A29%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ALLOUCHE,%20Yair&rft.date=2024-05-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024176784A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true