RAPID LEARNING WITH HIGH LOCALIZED SYNAPTIC PLASTICITY

A method includes selecting artificial neural network parameters; sampling the parameters; selecting connection weights; initializing the artificial neural networks; running the artificial neural networks on cognitive tasks; and determining whether activity is within an acceptable range. A computing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Freedman, David J, Masse, Nicolas Y, Rosen, Matthew C
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Freedman, David J
Masse, Nicolas Y
Rosen, Matthew C
description A method includes selecting artificial neural network parameters; sampling the parameters; selecting connection weights; initializing the artificial neural networks; running the artificial neural networks on cognitive tasks; and determining whether activity is within an acceptable range. A computing system includes a processor; and a memory having stored thereon computer-executable instructions that, when executed by the one or more processors, cause the computing system to select artificial neural network parameters; sample the parameters; select connection weights; initialize the artificial neural networks; run the artificial neural networks on cognitive tasks; and determine whether activity is within an acceptable range. A non-transitory computer-readable medium containing program instructions that when executed, cause a computer to select artificial neural network parameters; sample the parameters; select connection weights; initialize the artificial neural networks; run the artificial neural networks on cognitive tasks; and determine whether activity is within an acceptable range.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024160944A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024160944A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024160944A13</originalsourceid><addsrcrecordid>eNrjZDALcgzwdFHwcXUM8vP0c1cI9wzxUPDwdPdQ8PF3dvTxjHJ1UQiO9HMMCPF0VgjwcQwG0p4hkTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAyMTQzMDSxMTR0Jg4VQC5vyj1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>RAPID LEARNING WITH HIGH LOCALIZED SYNAPTIC PLASTICITY</title><source>esp@cenet</source><creator>Freedman, David J ; Masse, Nicolas Y ; Rosen, Matthew C</creator><creatorcontrib>Freedman, David J ; Masse, Nicolas Y ; Rosen, Matthew C</creatorcontrib><description>A method includes selecting artificial neural network parameters; sampling the parameters; selecting connection weights; initializing the artificial neural networks; running the artificial neural networks on cognitive tasks; and determining whether activity is within an acceptable range. A computing system includes a processor; and a memory having stored thereon computer-executable instructions that, when executed by the one or more processors, cause the computing system to select artificial neural network parameters; sample the parameters; select connection weights; initialize the artificial neural networks; run the artificial neural networks on cognitive tasks; and determine whether activity is within an acceptable range. A non-transitory computer-readable medium containing program instructions that when executed, cause a computer to select artificial neural network parameters; sample the parameters; select connection weights; initialize the artificial neural networks; run the artificial neural networks on cognitive tasks; and determine whether activity is within an acceptable range.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240516&amp;DB=EPODOC&amp;CC=US&amp;NR=2024160944A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25571,76555</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240516&amp;DB=EPODOC&amp;CC=US&amp;NR=2024160944A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Freedman, David J</creatorcontrib><creatorcontrib>Masse, Nicolas Y</creatorcontrib><creatorcontrib>Rosen, Matthew C</creatorcontrib><title>RAPID LEARNING WITH HIGH LOCALIZED SYNAPTIC PLASTICITY</title><description>A method includes selecting artificial neural network parameters; sampling the parameters; selecting connection weights; initializing the artificial neural networks; running the artificial neural networks on cognitive tasks; and determining whether activity is within an acceptable range. A computing system includes a processor; and a memory having stored thereon computer-executable instructions that, when executed by the one or more processors, cause the computing system to select artificial neural network parameters; sample the parameters; select connection weights; initialize the artificial neural networks; run the artificial neural networks on cognitive tasks; and determine whether activity is within an acceptable range. A non-transitory computer-readable medium containing program instructions that when executed, cause a computer to select artificial neural network parameters; sample the parameters; select connection weights; initialize the artificial neural networks; run the artificial neural networks on cognitive tasks; and determine whether activity is within an acceptable range.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDALcgzwdFHwcXUM8vP0c1cI9wzxUPDwdPdQ8PF3dvTxjHJ1UQiO9HMMCPF0VgjwcQwG0p4hkTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAyMTQzMDSxMTR0Jg4VQC5vyj1</recordid><startdate>20240516</startdate><enddate>20240516</enddate><creator>Freedman, David J</creator><creator>Masse, Nicolas Y</creator><creator>Rosen, Matthew C</creator><scope>EVB</scope></search><sort><creationdate>20240516</creationdate><title>RAPID LEARNING WITH HIGH LOCALIZED SYNAPTIC PLASTICITY</title><author>Freedman, David J ; Masse, Nicolas Y ; Rosen, Matthew C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024160944A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Freedman, David J</creatorcontrib><creatorcontrib>Masse, Nicolas Y</creatorcontrib><creatorcontrib>Rosen, Matthew C</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Freedman, David J</au><au>Masse, Nicolas Y</au><au>Rosen, Matthew C</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>RAPID LEARNING WITH HIGH LOCALIZED SYNAPTIC PLASTICITY</title><date>2024-05-16</date><risdate>2024</risdate><abstract>A method includes selecting artificial neural network parameters; sampling the parameters; selecting connection weights; initializing the artificial neural networks; running the artificial neural networks on cognitive tasks; and determining whether activity is within an acceptable range. A computing system includes a processor; and a memory having stored thereon computer-executable instructions that, when executed by the one or more processors, cause the computing system to select artificial neural network parameters; sample the parameters; select connection weights; initialize the artificial neural networks; run the artificial neural networks on cognitive tasks; and determine whether activity is within an acceptable range. A non-transitory computer-readable medium containing program instructions that when executed, cause a computer to select artificial neural network parameters; sample the parameters; select connection weights; initialize the artificial neural networks; run the artificial neural networks on cognitive tasks; and determine whether activity is within an acceptable range.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024160944A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title RAPID LEARNING WITH HIGH LOCALIZED SYNAPTIC PLASTICITY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T14%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Freedman,%20David%20J&rft.date=2024-05-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024160944A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true