RAPID LEARNING WITH HIGH LOCALIZED SYNAPTIC PLASTICITY
A method includes selecting artificial neural network parameters; sampling the parameters; selecting connection weights; initializing the artificial neural networks; running the artificial neural networks on cognitive tasks; and determining whether activity is within an acceptable range. A computing...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Freedman, David J Masse, Nicolas Y Rosen, Matthew C |
description | A method includes selecting artificial neural network parameters; sampling the parameters; selecting connection weights; initializing the artificial neural networks; running the artificial neural networks on cognitive tasks; and determining whether activity is within an acceptable range. A computing system includes a processor; and a memory having stored thereon computer-executable instructions that, when executed by the one or more processors, cause the computing system to select artificial neural network parameters; sample the parameters; select connection weights; initialize the artificial neural networks; run the artificial neural networks on cognitive tasks; and determine whether activity is within an acceptable range. A non-transitory computer-readable medium containing program instructions that when executed, cause a computer to select artificial neural network parameters; sample the parameters; select connection weights; initialize the artificial neural networks; run the artificial neural networks on cognitive tasks; and determine whether activity is within an acceptable range. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024160944A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024160944A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024160944A13</originalsourceid><addsrcrecordid>eNrjZDALcgzwdFHwcXUM8vP0c1cI9wzxUPDwdPdQ8PF3dvTxjHJ1UQiO9HMMCPF0VgjwcQwG0p4hkTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAyMTQzMDSxMTR0Jg4VQC5vyj1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>RAPID LEARNING WITH HIGH LOCALIZED SYNAPTIC PLASTICITY</title><source>esp@cenet</source><creator>Freedman, David J ; Masse, Nicolas Y ; Rosen, Matthew C</creator><creatorcontrib>Freedman, David J ; Masse, Nicolas Y ; Rosen, Matthew C</creatorcontrib><description>A method includes selecting artificial neural network parameters; sampling the parameters; selecting connection weights; initializing the artificial neural networks; running the artificial neural networks on cognitive tasks; and determining whether activity is within an acceptable range. A computing system includes a processor; and a memory having stored thereon computer-executable instructions that, when executed by the one or more processors, cause the computing system to select artificial neural network parameters; sample the parameters; select connection weights; initialize the artificial neural networks; run the artificial neural networks on cognitive tasks; and determine whether activity is within an acceptable range. A non-transitory computer-readable medium containing program instructions that when executed, cause a computer to select artificial neural network parameters; sample the parameters; select connection weights; initialize the artificial neural networks; run the artificial neural networks on cognitive tasks; and determine whether activity is within an acceptable range.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240516&DB=EPODOC&CC=US&NR=2024160944A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25571,76555</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240516&DB=EPODOC&CC=US&NR=2024160944A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Freedman, David J</creatorcontrib><creatorcontrib>Masse, Nicolas Y</creatorcontrib><creatorcontrib>Rosen, Matthew C</creatorcontrib><title>RAPID LEARNING WITH HIGH LOCALIZED SYNAPTIC PLASTICITY</title><description>A method includes selecting artificial neural network parameters; sampling the parameters; selecting connection weights; initializing the artificial neural networks; running the artificial neural networks on cognitive tasks; and determining whether activity is within an acceptable range. A computing system includes a processor; and a memory having stored thereon computer-executable instructions that, when executed by the one or more processors, cause the computing system to select artificial neural network parameters; sample the parameters; select connection weights; initialize the artificial neural networks; run the artificial neural networks on cognitive tasks; and determine whether activity is within an acceptable range. A non-transitory computer-readable medium containing program instructions that when executed, cause a computer to select artificial neural network parameters; sample the parameters; select connection weights; initialize the artificial neural networks; run the artificial neural networks on cognitive tasks; and determine whether activity is within an acceptable range.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDALcgzwdFHwcXUM8vP0c1cI9wzxUPDwdPdQ8PF3dvTxjHJ1UQiO9HMMCPF0VgjwcQwG0p4hkTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAyMTQzMDSxMTR0Jg4VQC5vyj1</recordid><startdate>20240516</startdate><enddate>20240516</enddate><creator>Freedman, David J</creator><creator>Masse, Nicolas Y</creator><creator>Rosen, Matthew C</creator><scope>EVB</scope></search><sort><creationdate>20240516</creationdate><title>RAPID LEARNING WITH HIGH LOCALIZED SYNAPTIC PLASTICITY</title><author>Freedman, David J ; Masse, Nicolas Y ; Rosen, Matthew C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024160944A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Freedman, David J</creatorcontrib><creatorcontrib>Masse, Nicolas Y</creatorcontrib><creatorcontrib>Rosen, Matthew C</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Freedman, David J</au><au>Masse, Nicolas Y</au><au>Rosen, Matthew C</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>RAPID LEARNING WITH HIGH LOCALIZED SYNAPTIC PLASTICITY</title><date>2024-05-16</date><risdate>2024</risdate><abstract>A method includes selecting artificial neural network parameters; sampling the parameters; selecting connection weights; initializing the artificial neural networks; running the artificial neural networks on cognitive tasks; and determining whether activity is within an acceptable range. A computing system includes a processor; and a memory having stored thereon computer-executable instructions that, when executed by the one or more processors, cause the computing system to select artificial neural network parameters; sample the parameters; select connection weights; initialize the artificial neural networks; run the artificial neural networks on cognitive tasks; and determine whether activity is within an acceptable range. A non-transitory computer-readable medium containing program instructions that when executed, cause a computer to select artificial neural network parameters; sample the parameters; select connection weights; initialize the artificial neural networks; run the artificial neural networks on cognitive tasks; and determine whether activity is within an acceptable range.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024160944A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | RAPID LEARNING WITH HIGH LOCALIZED SYNAPTIC PLASTICITY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T05%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Freedman,%20David%20J&rft.date=2024-05-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024160944A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |