Increasing Accuracy and Resolution of Weather Forecasts Using Deep Generative Models
Embodiments of the present invention provide the use of a conditional Generative Adversarial Network (GAN) to simultaneously correct and downscale (super-resolve) global ensemble weather or climate forecasts. Specifically, a generator deep neural network (G-DNN) in the cGAN comprises a corrector DNN...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Embodiments of the present invention provide the use of a conditional Generative Adversarial Network (GAN) to simultaneously correct and downscale (super-resolve) global ensemble weather or climate forecasts. Specifically, a generator deep neural network (G-DNN) in the cGAN comprises a corrector DNN (C-DNN) followed by a super-resolver DNN (SR-DNN). The C-DNN bias-corrects coarse, global meteorological forecasts, taking into account other relevant contextual meteorological fields. The SR-DNN downscales bias-corrected C-DNN output into G-DNN output at a higher target spatial resolution. The GAN is trained in three stages: C-DNN training, SR-DNN training, and overall GAN training, each using separate loss functions. Embodiments of the present invention significantly outperform an interpolation baseline, and approach the performance of operational regional high-resolution forecast models across an array of established probabilistic metrics. Crucially, embodiments of the present invention, once trained, produce high-resolution predictions in seconds on a single machine. |
---|