ROTATING ELECTRICAL MACHINE, STATOR CORE AND ROTOR CORE SET, METHOD FOR MANUFACTURING ROTATING ELECTRICAL MACHINE, METHOD FOR MANUFACTURING NON-ORIENTED ELECTRICAL STEEL SHEET FOR STATOR AND NON-ORIENTED ELECTRICAL STEEL SHEET FOR ROTOR, METHOD FOR MANUFACTURING STATOR AND ROTOR, AND NON-ORIENTED ELECTRICAL STEEL SHEET SET
The rotating electrical machine includes a stator, a rotor, and a casing that accommodates the stator and the rotor, in which at least one of the following conditions 1 and 2 is satisfied.Condition 1: a thermal conductivity A of a non-oriented electrical steel sheet that is used for a core of the st...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MURAKAWA, Tesshu NATORI, Yoshiaki |
description | The rotating electrical machine includes a stator, a rotor, and a casing that accommodates the stator and the rotor, in which at least one of the following conditions 1 and 2 is satisfied.Condition 1: a thermal conductivity A of a non-oriented electrical steel sheet that is used for a core of the stator is in a range of 12 to 35 W/(m·K), a thermal conductivity B of a non-oriented electrical steel sheet that is used for a core of the rotor is in a range of 10 to 33 W/(m·K), and both the thermal conductivities have a relationship of an expression (1) of A>BCondition 2: a thermal diffusivity A1 of the non-oriented electrical steel sheet that is used for the core of the stator is in a range of 3.0×10−6 to 9.0×10−6 m2/sW/(m·K), a thermal diffusivity B1 of the non-oriented electrical steel sheet that is used for the core of the rotor is in a range of 2.5×10−6 to 8.5×10−6 m2/sW/(m·K), and both the thermal diffusivities have a relationship of an expression (3) of A1>B1 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024154472A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024154472A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024154472A13</originalsourceid><addsrcrecordid>eNqNkDELwjAQhevgIOp_OHBtwdaKc0iuJtAmkFznUiROooX6_zEtFVwsXXLc3fvePbJZCWuIkdJXwBI5WcVZCRXjUmmMwYWdscCNRWBaQBB_W4cUQ4UkjYAiDCum64Jxqu1gNuv6l9JGJ8Yq1ITil3SEGF6JSCM1xRoSLUXG5DOnfywn6VL38BG7aH1vH73fT3UbHQokLhPfvRrfd-3NP_27qV12zPL0nOeXjKWnZaoPAiJxdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ROTATING ELECTRICAL MACHINE, STATOR CORE AND ROTOR CORE SET, METHOD FOR MANUFACTURING ROTATING ELECTRICAL MACHINE, METHOD FOR MANUFACTURING NON-ORIENTED ELECTRICAL STEEL SHEET FOR STATOR AND NON-ORIENTED ELECTRICAL STEEL SHEET FOR ROTOR, METHOD FOR MANUFACTURING STATOR AND ROTOR, AND NON-ORIENTED ELECTRICAL STEEL SHEET SET</title><source>esp@cenet</source><creator>MURAKAWA, Tesshu ; NATORI, Yoshiaki</creator><creatorcontrib>MURAKAWA, Tesshu ; NATORI, Yoshiaki</creatorcontrib><description>The rotating electrical machine includes a stator, a rotor, and a casing that accommodates the stator and the rotor, in which at least one of the following conditions 1 and 2 is satisfied.Condition 1: a thermal conductivity A of a non-oriented electrical steel sheet that is used for a core of the stator is in a range of 12 to 35 W/(m·K), a thermal conductivity B of a non-oriented electrical steel sheet that is used for a core of the rotor is in a range of 10 to 33 W/(m·K), and both the thermal conductivities have a relationship of an expression (1) of A>BCondition 2: a thermal diffusivity A1 of the non-oriented electrical steel sheet that is used for the core of the stator is in a range of 3.0×10−6 to 9.0×10−6 m2/sW/(m·K), a thermal diffusivity B1 of the non-oriented electrical steel sheet that is used for the core of the rotor is in a range of 2.5×10−6 to 8.5×10−6 m2/sW/(m·K), and both the thermal diffusivities have a relationship of an expression (3) of A1>B1</description><language>eng</language><subject>ALLOYS ; BASIC ELECTRIC ELEMENTS ; CHEMISTRY ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; DYNAMO-ELECTRIC MACHINES ; ELECTRICITY ; FERROUS OR NON-FERROUS ALLOYS ; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS ; GENERATION ; INDUCTANCES ; MAGNETS ; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS ; METALLURGY ; METALLURGY OF IRON ; MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS ; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES ; TRANSFORMERS ; TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240509&DB=EPODOC&CC=US&NR=2024154472A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240509&DB=EPODOC&CC=US&NR=2024154472A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MURAKAWA, Tesshu</creatorcontrib><creatorcontrib>NATORI, Yoshiaki</creatorcontrib><title>ROTATING ELECTRICAL MACHINE, STATOR CORE AND ROTOR CORE SET, METHOD FOR MANUFACTURING ROTATING ELECTRICAL MACHINE, METHOD FOR MANUFACTURING NON-ORIENTED ELECTRICAL STEEL SHEET FOR STATOR AND NON-ORIENTED ELECTRICAL STEEL SHEET FOR ROTOR, METHOD FOR MANUFACTURING STATOR AND ROTOR, AND NON-ORIENTED ELECTRICAL STEEL SHEET SET</title><description>The rotating electrical machine includes a stator, a rotor, and a casing that accommodates the stator and the rotor, in which at least one of the following conditions 1 and 2 is satisfied.Condition 1: a thermal conductivity A of a non-oriented electrical steel sheet that is used for a core of the stator is in a range of 12 to 35 W/(m·K), a thermal conductivity B of a non-oriented electrical steel sheet that is used for a core of the rotor is in a range of 10 to 33 W/(m·K), and both the thermal conductivities have a relationship of an expression (1) of A>BCondition 2: a thermal diffusivity A1 of the non-oriented electrical steel sheet that is used for the core of the stator is in a range of 3.0×10−6 to 9.0×10−6 m2/sW/(m·K), a thermal diffusivity B1 of the non-oriented electrical steel sheet that is used for the core of the rotor is in a range of 2.5×10−6 to 8.5×10−6 m2/sW/(m·K), and both the thermal diffusivities have a relationship of an expression (3) of A1>B1</description><subject>ALLOYS</subject><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMISTRY</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>DYNAMO-ELECTRIC MACHINES</subject><subject>ELECTRICITY</subject><subject>FERROUS OR NON-FERROUS ALLOYS</subject><subject>GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS</subject><subject>GENERATION</subject><subject>INDUCTANCES</subject><subject>MAGNETS</subject><subject>MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS</subject><subject>METALLURGY</subject><subject>METALLURGY OF IRON</subject><subject>MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS</subject><subject>SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES</subject><subject>TRANSFORMERS</subject><subject>TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNkDELwjAQhevgIOp_OHBtwdaKc0iuJtAmkFznUiROooX6_zEtFVwsXXLc3fvePbJZCWuIkdJXwBI5WcVZCRXjUmmMwYWdscCNRWBaQBB_W4cUQ4UkjYAiDCum64Jxqu1gNuv6l9JGJ8Yq1ITil3SEGF6JSCM1xRoSLUXG5DOnfywn6VL38BG7aH1vH73fT3UbHQokLhPfvRrfd-3NP_27qV12zPL0nOeXjKWnZaoPAiJxdQ</recordid><startdate>20240509</startdate><enddate>20240509</enddate><creator>MURAKAWA, Tesshu</creator><creator>NATORI, Yoshiaki</creator><scope>EVB</scope></search><sort><creationdate>20240509</creationdate><title>ROTATING ELECTRICAL MACHINE, STATOR CORE AND ROTOR CORE SET, METHOD FOR MANUFACTURING ROTATING ELECTRICAL MACHINE, METHOD FOR MANUFACTURING NON-ORIENTED ELECTRICAL STEEL SHEET FOR STATOR AND NON-ORIENTED ELECTRICAL STEEL SHEET FOR ROTOR, METHOD FOR MANUFACTURING STATOR AND ROTOR, AND NON-ORIENTED ELECTRICAL STEEL SHEET SET</title><author>MURAKAWA, Tesshu ; NATORI, Yoshiaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024154472A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ALLOYS</topic><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMISTRY</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>DYNAMO-ELECTRIC MACHINES</topic><topic>ELECTRICITY</topic><topic>FERROUS OR NON-FERROUS ALLOYS</topic><topic>GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS</topic><topic>GENERATION</topic><topic>INDUCTANCES</topic><topic>MAGNETS</topic><topic>MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS</topic><topic>METALLURGY</topic><topic>METALLURGY OF IRON</topic><topic>MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS</topic><topic>SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES</topic><topic>TRANSFORMERS</topic><topic>TREATMENT OF ALLOYS OR NON-FERROUS METALS</topic><toplevel>online_resources</toplevel><creatorcontrib>MURAKAWA, Tesshu</creatorcontrib><creatorcontrib>NATORI, Yoshiaki</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MURAKAWA, Tesshu</au><au>NATORI, Yoshiaki</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ROTATING ELECTRICAL MACHINE, STATOR CORE AND ROTOR CORE SET, METHOD FOR MANUFACTURING ROTATING ELECTRICAL MACHINE, METHOD FOR MANUFACTURING NON-ORIENTED ELECTRICAL STEEL SHEET FOR STATOR AND NON-ORIENTED ELECTRICAL STEEL SHEET FOR ROTOR, METHOD FOR MANUFACTURING STATOR AND ROTOR, AND NON-ORIENTED ELECTRICAL STEEL SHEET SET</title><date>2024-05-09</date><risdate>2024</risdate><abstract>The rotating electrical machine includes a stator, a rotor, and a casing that accommodates the stator and the rotor, in which at least one of the following conditions 1 and 2 is satisfied.Condition 1: a thermal conductivity A of a non-oriented electrical steel sheet that is used for a core of the stator is in a range of 12 to 35 W/(m·K), a thermal conductivity B of a non-oriented electrical steel sheet that is used for a core of the rotor is in a range of 10 to 33 W/(m·K), and both the thermal conductivities have a relationship of an expression (1) of A>BCondition 2: a thermal diffusivity A1 of the non-oriented electrical steel sheet that is used for the core of the stator is in a range of 3.0×10−6 to 9.0×10−6 m2/sW/(m·K), a thermal diffusivity B1 of the non-oriented electrical steel sheet that is used for the core of the rotor is in a range of 2.5×10−6 to 8.5×10−6 m2/sW/(m·K), and both the thermal diffusivities have a relationship of an expression (3) of A1>B1</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024154472A1 |
source | esp@cenet |
subjects | ALLOYS BASIC ELECTRIC ELEMENTS CHEMISTRY CONVERSION OR DISTRIBUTION OF ELECTRIC POWER DYNAMO-ELECTRIC MACHINES ELECTRICITY FERROUS OR NON-FERROUS ALLOYS GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS GENERATION INDUCTANCES MAGNETS MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS METALLURGY METALLURGY OF IRON MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES TRANSFORMERS TREATMENT OF ALLOYS OR NON-FERROUS METALS |
title | ROTATING ELECTRICAL MACHINE, STATOR CORE AND ROTOR CORE SET, METHOD FOR MANUFACTURING ROTATING ELECTRICAL MACHINE, METHOD FOR MANUFACTURING NON-ORIENTED ELECTRICAL STEEL SHEET FOR STATOR AND NON-ORIENTED ELECTRICAL STEEL SHEET FOR ROTOR, METHOD FOR MANUFACTURING STATOR AND ROTOR, AND NON-ORIENTED ELECTRICAL STEEL SHEET SET |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MURAKAWA,%20Tesshu&rft.date=2024-05-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024154472A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |