PERIODICALLY COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING

Disclosed herein are methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modeling agents in multi-agent systems as reinforcement learning (RL) agents and training control policies that cause the agents to cooperate towards a common goal. A method ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BRENTANO, Grace Taixi, ANDRE, David, PRADHAN, Salil Vijaykumar, NGUYEN, Lam Thanh, MURPHY, Gearoid
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BRENTANO, Grace Taixi
ANDRE, David
PRADHAN, Salil Vijaykumar
NGUYEN, Lam Thanh
MURPHY, Gearoid
description Disclosed herein are methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modeling agents in multi-agent systems as reinforcement learning (RL) agents and training control policies that cause the agents to cooperate towards a common goal. A method can include generating, for each of a group of simulated local agents in an agent network in which the simulated local agents share resources, information, or both, experience tuples having a state for the simulated local agent, an action taken by the simulated local agent, and a local result for the action taken, updating each local policy of each simulated local agent according to the respective local result, providing, to each of the simulated local agents, information representing a global state of the agent network, and updating each local policy of each simulated local agent according to the global state of the agent network.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024152774A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024152774A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024152774A13</originalsourceid><addsrcrecordid>eNrjZLAOcA3y9HfxdHb08YlUcPb3B_IdQzzDXBV8Q31CPHUd3V39QhSCXD393PyDnF19QTwfV8cgP08_dx4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGJoamRubuJoaEycKgC1Niqk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PERIODICALLY COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING</title><source>esp@cenet</source><creator>BRENTANO, Grace Taixi ; ANDRE, David ; PRADHAN, Salil Vijaykumar ; NGUYEN, Lam Thanh ; MURPHY, Gearoid</creator><creatorcontrib>BRENTANO, Grace Taixi ; ANDRE, David ; PRADHAN, Salil Vijaykumar ; NGUYEN, Lam Thanh ; MURPHY, Gearoid</creatorcontrib><description>Disclosed herein are methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modeling agents in multi-agent systems as reinforcement learning (RL) agents and training control policies that cause the agents to cooperate towards a common goal. A method can include generating, for each of a group of simulated local agents in an agent network in which the simulated local agents share resources, information, or both, experience tuples having a state for the simulated local agent, an action taken by the simulated local agent, and a local result for the action taken, updating each local policy of each simulated local agent according to the respective local result, providing, to each of the simulated local agents, information representing a global state of the agent network, and updating each local policy of each simulated local agent according to the global state of the agent network.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240509&amp;DB=EPODOC&amp;CC=US&amp;NR=2024152774A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240509&amp;DB=EPODOC&amp;CC=US&amp;NR=2024152774A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BRENTANO, Grace Taixi</creatorcontrib><creatorcontrib>ANDRE, David</creatorcontrib><creatorcontrib>PRADHAN, Salil Vijaykumar</creatorcontrib><creatorcontrib>NGUYEN, Lam Thanh</creatorcontrib><creatorcontrib>MURPHY, Gearoid</creatorcontrib><title>PERIODICALLY COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING</title><description>Disclosed herein are methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modeling agents in multi-agent systems as reinforcement learning (RL) agents and training control policies that cause the agents to cooperate towards a common goal. A method can include generating, for each of a group of simulated local agents in an agent network in which the simulated local agents share resources, information, or both, experience tuples having a state for the simulated local agent, an action taken by the simulated local agent, and a local result for the action taken, updating each local policy of each simulated local agent according to the respective local result, providing, to each of the simulated local agents, information representing a global state of the agent network, and updating each local policy of each simulated local agent according to the global state of the agent network.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAOcA3y9HfxdHb08YlUcPb3B_IdQzzDXBV8Q31CPHUd3V39QhSCXD393PyDnF19QTwfV8cgP08_dx4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGJoamRubuJoaEycKgC1Niqk</recordid><startdate>20240509</startdate><enddate>20240509</enddate><creator>BRENTANO, Grace Taixi</creator><creator>ANDRE, David</creator><creator>PRADHAN, Salil Vijaykumar</creator><creator>NGUYEN, Lam Thanh</creator><creator>MURPHY, Gearoid</creator><scope>EVB</scope></search><sort><creationdate>20240509</creationdate><title>PERIODICALLY COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING</title><author>BRENTANO, Grace Taixi ; ANDRE, David ; PRADHAN, Salil Vijaykumar ; NGUYEN, Lam Thanh ; MURPHY, Gearoid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024152774A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>BRENTANO, Grace Taixi</creatorcontrib><creatorcontrib>ANDRE, David</creatorcontrib><creatorcontrib>PRADHAN, Salil Vijaykumar</creatorcontrib><creatorcontrib>NGUYEN, Lam Thanh</creatorcontrib><creatorcontrib>MURPHY, Gearoid</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BRENTANO, Grace Taixi</au><au>ANDRE, David</au><au>PRADHAN, Salil Vijaykumar</au><au>NGUYEN, Lam Thanh</au><au>MURPHY, Gearoid</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PERIODICALLY COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING</title><date>2024-05-09</date><risdate>2024</risdate><abstract>Disclosed herein are methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modeling agents in multi-agent systems as reinforcement learning (RL) agents and training control policies that cause the agents to cooperate towards a common goal. A method can include generating, for each of a group of simulated local agents in an agent network in which the simulated local agents share resources, information, or both, experience tuples having a state for the simulated local agent, an action taken by the simulated local agent, and a local result for the action taken, updating each local policy of each simulated local agent according to the respective local result, providing, to each of the simulated local agents, information representing a global state of the agent network, and updating each local policy of each simulated local agent according to the global state of the agent network.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024152774A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title PERIODICALLY COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BRENTANO,%20Grace%20Taixi&rft.date=2024-05-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024152774A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true