PERIODICALLY COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING
Disclosed herein are methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modeling agents in multi-agent systems as reinforcement learning (RL) agents and training control policies that cause the agents to cooperate towards a common goal. A method ca...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | BRENTANO, Grace Taixi ANDRE, David PRADHAN, Salil Vijaykumar NGUYEN, Lam Thanh MURPHY, Gearoid |
description | Disclosed herein are methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modeling agents in multi-agent systems as reinforcement learning (RL) agents and training control policies that cause the agents to cooperate towards a common goal. A method can include generating, for each of a group of simulated local agents in an agent network in which the simulated local agents share resources, information, or both, experience tuples having a state for the simulated local agent, an action taken by the simulated local agent, and a local result for the action taken, updating each local policy of each simulated local agent according to the respective local result, providing, to each of the simulated local agents, information representing a global state of the agent network, and updating each local policy of each simulated local agent according to the global state of the agent network. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024152774A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024152774A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024152774A13</originalsourceid><addsrcrecordid>eNrjZLAOcA3y9HfxdHb08YlUcPb3B_IdQzzDXBV8Q31CPHUd3V39QhSCXD393PyDnF19QTwfV8cgP08_dx4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGJoamRubuJoaEycKgC1Niqk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PERIODICALLY COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING</title><source>esp@cenet</source><creator>BRENTANO, Grace Taixi ; ANDRE, David ; PRADHAN, Salil Vijaykumar ; NGUYEN, Lam Thanh ; MURPHY, Gearoid</creator><creatorcontrib>BRENTANO, Grace Taixi ; ANDRE, David ; PRADHAN, Salil Vijaykumar ; NGUYEN, Lam Thanh ; MURPHY, Gearoid</creatorcontrib><description>Disclosed herein are methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modeling agents in multi-agent systems as reinforcement learning (RL) agents and training control policies that cause the agents to cooperate towards a common goal. A method can include generating, for each of a group of simulated local agents in an agent network in which the simulated local agents share resources, information, or both, experience tuples having a state for the simulated local agent, an action taken by the simulated local agent, and a local result for the action taken, updating each local policy of each simulated local agent according to the respective local result, providing, to each of the simulated local agents, information representing a global state of the agent network, and updating each local policy of each simulated local agent according to the global state of the agent network.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240509&DB=EPODOC&CC=US&NR=2024152774A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240509&DB=EPODOC&CC=US&NR=2024152774A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BRENTANO, Grace Taixi</creatorcontrib><creatorcontrib>ANDRE, David</creatorcontrib><creatorcontrib>PRADHAN, Salil Vijaykumar</creatorcontrib><creatorcontrib>NGUYEN, Lam Thanh</creatorcontrib><creatorcontrib>MURPHY, Gearoid</creatorcontrib><title>PERIODICALLY COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING</title><description>Disclosed herein are methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modeling agents in multi-agent systems as reinforcement learning (RL) agents and training control policies that cause the agents to cooperate towards a common goal. A method can include generating, for each of a group of simulated local agents in an agent network in which the simulated local agents share resources, information, or both, experience tuples having a state for the simulated local agent, an action taken by the simulated local agent, and a local result for the action taken, updating each local policy of each simulated local agent according to the respective local result, providing, to each of the simulated local agents, information representing a global state of the agent network, and updating each local policy of each simulated local agent according to the global state of the agent network.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAOcA3y9HfxdHb08YlUcPb3B_IdQzzDXBV8Q31CPHUd3V39QhSCXD393PyDnF19QTwfV8cgP08_dx4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGJoamRubuJoaEycKgC1Niqk</recordid><startdate>20240509</startdate><enddate>20240509</enddate><creator>BRENTANO, Grace Taixi</creator><creator>ANDRE, David</creator><creator>PRADHAN, Salil Vijaykumar</creator><creator>NGUYEN, Lam Thanh</creator><creator>MURPHY, Gearoid</creator><scope>EVB</scope></search><sort><creationdate>20240509</creationdate><title>PERIODICALLY COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING</title><author>BRENTANO, Grace Taixi ; ANDRE, David ; PRADHAN, Salil Vijaykumar ; NGUYEN, Lam Thanh ; MURPHY, Gearoid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024152774A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>BRENTANO, Grace Taixi</creatorcontrib><creatorcontrib>ANDRE, David</creatorcontrib><creatorcontrib>PRADHAN, Salil Vijaykumar</creatorcontrib><creatorcontrib>NGUYEN, Lam Thanh</creatorcontrib><creatorcontrib>MURPHY, Gearoid</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BRENTANO, Grace Taixi</au><au>ANDRE, David</au><au>PRADHAN, Salil Vijaykumar</au><au>NGUYEN, Lam Thanh</au><au>MURPHY, Gearoid</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PERIODICALLY COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING</title><date>2024-05-09</date><risdate>2024</risdate><abstract>Disclosed herein are methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modeling agents in multi-agent systems as reinforcement learning (RL) agents and training control policies that cause the agents to cooperate towards a common goal. A method can include generating, for each of a group of simulated local agents in an agent network in which the simulated local agents share resources, information, or both, experience tuples having a state for the simulated local agent, an action taken by the simulated local agent, and a local result for the action taken, updating each local policy of each simulated local agent according to the respective local result, providing, to each of the simulated local agents, information representing a global state of the agent network, and updating each local policy of each simulated local agent according to the global state of the agent network.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024152774A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | PERIODICALLY COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BRENTANO,%20Grace%20Taixi&rft.date=2024-05-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024152774A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |