METHODS AND APPARATUS FOR DETECTING WHETHER A STRING OF CHARACTERS REPRESENTS MALICIOUS ACTIVITY USING MACHINE LEARNING

In some embodiments, a processor can receive an input string associated with a potentially malicious artifact and convert each character in the input string into a vector of values to define a character matrix. The processor can apply a convolution matrix to a first window of the character matrix to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: SAXE, Joshua Daniel
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SAXE, Joshua Daniel
description In some embodiments, a processor can receive an input string associated with a potentially malicious artifact and convert each character in the input string into a vector of values to define a character matrix. The processor can apply a convolution matrix to a first window of the character matrix to define a first subscore, apply the convolution matrix to a second window of the character matrix to define a second subscore and combine the first subscore and the second subscore to define a score for the convolution matrix. The processor can provide the score for the convolution matrix as an input to a machine learning threat model, identify the potentially malicious artifact as malicious based on an output of the machine learning threat model, and perform a remedial action on the potentially malicious artifact based on identifying the potentially malicious artifact as malicious.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024152617A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024152617A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024152617A13</originalsourceid><addsrcrecordid>eNqNjL0KwkAQhNNYiPoOC9aCiX_1ctl4B-YSdjeKVQhyVqKBCL6-F_ABrAa--WamyacktVUugD4HrGtk1EagqBhyUjLq_BEuNkrEgCDKI6gKMDaqRokFmGomIa8CJZ6ccVV8iJ07O71CI-OiRGOdJzgRso9gnkzu3WMIi1_OkmVBauwq9K82DH13C8_wbhvJ1tk23WX79IDp5j_rC1fjOtE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHODS AND APPARATUS FOR DETECTING WHETHER A STRING OF CHARACTERS REPRESENTS MALICIOUS ACTIVITY USING MACHINE LEARNING</title><source>esp@cenet</source><creator>SAXE, Joshua Daniel</creator><creatorcontrib>SAXE, Joshua Daniel</creatorcontrib><description>In some embodiments, a processor can receive an input string associated with a potentially malicious artifact and convert each character in the input string into a vector of values to define a character matrix. The processor can apply a convolution matrix to a first window of the character matrix to define a first subscore, apply the convolution matrix to a second window of the character matrix to define a second subscore and combine the first subscore and the second subscore to define a score for the convolution matrix. The processor can provide the score for the convolution matrix as an input to a machine learning threat model, identify the potentially malicious artifact as malicious based on an output of the machine learning threat model, and perform a remedial action on the potentially malicious artifact based on identifying the potentially malicious artifact as malicious.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240509&amp;DB=EPODOC&amp;CC=US&amp;NR=2024152617A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240509&amp;DB=EPODOC&amp;CC=US&amp;NR=2024152617A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SAXE, Joshua Daniel</creatorcontrib><title>METHODS AND APPARATUS FOR DETECTING WHETHER A STRING OF CHARACTERS REPRESENTS MALICIOUS ACTIVITY USING MACHINE LEARNING</title><description>In some embodiments, a processor can receive an input string associated with a potentially malicious artifact and convert each character in the input string into a vector of values to define a character matrix. The processor can apply a convolution matrix to a first window of the character matrix to define a first subscore, apply the convolution matrix to a second window of the character matrix to define a second subscore and combine the first subscore and the second subscore to define a score for the convolution matrix. The processor can provide the score for the convolution matrix as an input to a machine learning threat model, identify the potentially malicious artifact as malicious based on an output of the machine learning threat model, and perform a remedial action on the potentially malicious artifact based on identifying the potentially malicious artifact as malicious.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjL0KwkAQhNNYiPoOC9aCiX_1ctl4B-YSdjeKVQhyVqKBCL6-F_ABrAa--WamyacktVUugD4HrGtk1EagqBhyUjLq_BEuNkrEgCDKI6gKMDaqRokFmGomIa8CJZ6ccVV8iJ07O71CI-OiRGOdJzgRso9gnkzu3WMIi1_OkmVBauwq9K82DH13C8_wbhvJ1tk23WX79IDp5j_rC1fjOtE</recordid><startdate>20240509</startdate><enddate>20240509</enddate><creator>SAXE, Joshua Daniel</creator><scope>EVB</scope></search><sort><creationdate>20240509</creationdate><title>METHODS AND APPARATUS FOR DETECTING WHETHER A STRING OF CHARACTERS REPRESENTS MALICIOUS ACTIVITY USING MACHINE LEARNING</title><author>SAXE, Joshua Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024152617A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>SAXE, Joshua Daniel</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SAXE, Joshua Daniel</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHODS AND APPARATUS FOR DETECTING WHETHER A STRING OF CHARACTERS REPRESENTS MALICIOUS ACTIVITY USING MACHINE LEARNING</title><date>2024-05-09</date><risdate>2024</risdate><abstract>In some embodiments, a processor can receive an input string associated with a potentially malicious artifact and convert each character in the input string into a vector of values to define a character matrix. The processor can apply a convolution matrix to a first window of the character matrix to define a first subscore, apply the convolution matrix to a second window of the character matrix to define a second subscore and combine the first subscore and the second subscore to define a score for the convolution matrix. The processor can provide the score for the convolution matrix as an input to a machine learning threat model, identify the potentially malicious artifact as malicious based on an output of the machine learning threat model, and perform a remedial action on the potentially malicious artifact based on identifying the potentially malicious artifact as malicious.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024152617A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title METHODS AND APPARATUS FOR DETECTING WHETHER A STRING OF CHARACTERS REPRESENTS MALICIOUS ACTIVITY USING MACHINE LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SAXE,%20Joshua%20Daniel&rft.date=2024-05-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024152617A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true