PROCESSES, MACHINES, AND ARTICLES OF MANUFACTURE RELATED TO MACHINE LEARNING FOR PREDICTING BIOACTIVITY OF COMPOUNDS

The computer system applies machine learning techniques to train a computational model using data representing researched items and their known properties. The computer system applies the trained computational model to data representing the potential candidate items to predict whether such items hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sanders, Nathan, Kolesky, David, Tam, Hok Hei, Karimi, Mostafa, Shivashankar, Varun, Lane, Terran
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Sanders, Nathan
Kolesky, David
Tam, Hok Hei
Karimi, Mostafa
Shivashankar, Varun
Lane, Terran
description The computer system applies machine learning techniques to train a computational model using data representing researched items and their known properties. The computer system applies the trained computational model to data representing the potential candidate items to predict whether such items have such properties. The trained computational model outputs one or more predictions about whether the potential candidate items are likely to have a property from among the plurality of types of properties that the computational model is trained to predict. The computer system allows multiple machine learning experiments to be defined, and then allows predictions from those multiple machine learning experiments to be queried, including accessing aggregate statistics for those predictions. In some implementations, a machine learning experiment can specify a computational model that is an ensemble of multiple models.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024145041A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024145041A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024145041A13</originalsourceid><addsrcrecordid>eNqNjMEKwjAQRHvxIOo_LHhVaGv7AWuysYE2KZtE8FSKxJNoof1_bEHvnmaGmTfrZGrZCnKO3AEaFJU2i0MjAdlrUZMDq-bGBIXCByZgqtGTBG9_ANSEbLS5gLIMLZPUwi_xrO0M6av2t-VF2Ka1wUi3TVaP_jnG3Vc3yV6RF9UxDu8ujkN_j684dcHlaV5kRZkWGWan_1YfbdQ5mw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PROCESSES, MACHINES, AND ARTICLES OF MANUFACTURE RELATED TO MACHINE LEARNING FOR PREDICTING BIOACTIVITY OF COMPOUNDS</title><source>esp@cenet</source><creator>Sanders, Nathan ; Kolesky, David ; Tam, Hok Hei ; Karimi, Mostafa ; Shivashankar, Varun ; Lane, Terran</creator><creatorcontrib>Sanders, Nathan ; Kolesky, David ; Tam, Hok Hei ; Karimi, Mostafa ; Shivashankar, Varun ; Lane, Terran</creatorcontrib><description>The computer system applies machine learning techniques to train a computational model using data representing researched items and their known properties. The computer system applies the trained computational model to data representing the potential candidate items to predict whether such items have such properties. The trained computational model outputs one or more predictions about whether the potential candidate items are likely to have a property from among the plurality of types of properties that the computational model is trained to predict. The computer system allows multiple machine learning experiments to be defined, and then allows predictions from those multiple machine learning experiments to be queried, including accessing aggregate statistics for those predictions. In some implementations, a machine learning experiment can specify a computational model that is an ensemble of multiple models.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240502&amp;DB=EPODOC&amp;CC=US&amp;NR=2024145041A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240502&amp;DB=EPODOC&amp;CC=US&amp;NR=2024145041A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sanders, Nathan</creatorcontrib><creatorcontrib>Kolesky, David</creatorcontrib><creatorcontrib>Tam, Hok Hei</creatorcontrib><creatorcontrib>Karimi, Mostafa</creatorcontrib><creatorcontrib>Shivashankar, Varun</creatorcontrib><creatorcontrib>Lane, Terran</creatorcontrib><title>PROCESSES, MACHINES, AND ARTICLES OF MANUFACTURE RELATED TO MACHINE LEARNING FOR PREDICTING BIOACTIVITY OF COMPOUNDS</title><description>The computer system applies machine learning techniques to train a computational model using data representing researched items and their known properties. The computer system applies the trained computational model to data representing the potential candidate items to predict whether such items have such properties. The trained computational model outputs one or more predictions about whether the potential candidate items are likely to have a property from among the plurality of types of properties that the computational model is trained to predict. The computer system allows multiple machine learning experiments to be defined, and then allows predictions from those multiple machine learning experiments to be queried, including accessing aggregate statistics for those predictions. In some implementations, a machine learning experiment can specify a computational model that is an ensemble of multiple models.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjMEKwjAQRHvxIOo_LHhVaGv7AWuysYE2KZtE8FSKxJNoof1_bEHvnmaGmTfrZGrZCnKO3AEaFJU2i0MjAdlrUZMDq-bGBIXCByZgqtGTBG9_ANSEbLS5gLIMLZPUwi_xrO0M6av2t-VF2Ka1wUi3TVaP_jnG3Vc3yV6RF9UxDu8ujkN_j684dcHlaV5kRZkWGWan_1YfbdQ5mw</recordid><startdate>20240502</startdate><enddate>20240502</enddate><creator>Sanders, Nathan</creator><creator>Kolesky, David</creator><creator>Tam, Hok Hei</creator><creator>Karimi, Mostafa</creator><creator>Shivashankar, Varun</creator><creator>Lane, Terran</creator><scope>EVB</scope></search><sort><creationdate>20240502</creationdate><title>PROCESSES, MACHINES, AND ARTICLES OF MANUFACTURE RELATED TO MACHINE LEARNING FOR PREDICTING BIOACTIVITY OF COMPOUNDS</title><author>Sanders, Nathan ; Kolesky, David ; Tam, Hok Hei ; Karimi, Mostafa ; Shivashankar, Varun ; Lane, Terran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024145041A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Sanders, Nathan</creatorcontrib><creatorcontrib>Kolesky, David</creatorcontrib><creatorcontrib>Tam, Hok Hei</creatorcontrib><creatorcontrib>Karimi, Mostafa</creatorcontrib><creatorcontrib>Shivashankar, Varun</creatorcontrib><creatorcontrib>Lane, Terran</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sanders, Nathan</au><au>Kolesky, David</au><au>Tam, Hok Hei</au><au>Karimi, Mostafa</au><au>Shivashankar, Varun</au><au>Lane, Terran</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PROCESSES, MACHINES, AND ARTICLES OF MANUFACTURE RELATED TO MACHINE LEARNING FOR PREDICTING BIOACTIVITY OF COMPOUNDS</title><date>2024-05-02</date><risdate>2024</risdate><abstract>The computer system applies machine learning techniques to train a computational model using data representing researched items and their known properties. The computer system applies the trained computational model to data representing the potential candidate items to predict whether such items have such properties. The trained computational model outputs one or more predictions about whether the potential candidate items are likely to have a property from among the plurality of types of properties that the computational model is trained to predict. The computer system allows multiple machine learning experiments to be defined, and then allows predictions from those multiple machine learning experiments to be queried, including accessing aggregate statistics for those predictions. In some implementations, a machine learning experiment can specify a computational model that is an ensemble of multiple models.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024145041A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title PROCESSES, MACHINES, AND ARTICLES OF MANUFACTURE RELATED TO MACHINE LEARNING FOR PREDICTING BIOACTIVITY OF COMPOUNDS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T03%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Sanders,%20Nathan&rft.date=2024-05-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024145041A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true