METHOD FOR MANUFACTURING AN ELECTROCHEMICAL COMPONENT COMPRISING A LITHIUM METAL ANODE AND AN ION-CONDUCTIVE INORGANIC MATERIAL LAYER
A method for manufacturing a component of an electrochemical energy storage device utilizes lithium such that a coating method based on pulsed laser ablation is utilized in the production of an ion-conducting inorganic material layer on at least one surface of a lithium metal anode. At least one mat...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | KEKKONEN, Ville LIIMATAINEN, Jari |
description | A method for manufacturing a component of an electrochemical energy storage device utilizes lithium such that a coating method based on pulsed laser ablation is utilized in the production of an ion-conducting inorganic material layer on at least one surface of a lithium metal anode. At least one material layer is processed by thermal, mechanical, or thermomechanical treatment or by combination of any of these treatments after pulsed laser deposition. A roll-to-roll method can be used in the deposition, in which the substrate to be coated is directed from one roll to the second roll, and the deposition takes place in the area between the rolls. Moving and/or turning mirrors can be used to direct laser pulses as a beam line array to the surface of the target material. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024136495A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024136495A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024136495A13</originalsourceid><addsrcrecordid>eNqNjTEKAjEQRbexEPUOAWtB3VWwDJNZM5DMSEwEKxGJlejCegXvbRQPYPP_Lx7vD6uXx2jFqFaC8ppTqyGmQLxVmhU6hBgELHoC7RSI3wkjx-8KtP9yylG0lLwqqgJpFoMlzcdAwjMQNgkiHVARS9hqJihfEQMV3OkjhnE1uJ5vfZ78elRNW4xgZ7l7nHLfnS_5np-ntF_Ol82iXjeblV7U_1Fvjc4-aw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD FOR MANUFACTURING AN ELECTROCHEMICAL COMPONENT COMPRISING A LITHIUM METAL ANODE AND AN ION-CONDUCTIVE INORGANIC MATERIAL LAYER</title><source>esp@cenet</source><creator>KEKKONEN, Ville ; LIIMATAINEN, Jari</creator><creatorcontrib>KEKKONEN, Ville ; LIIMATAINEN, Jari</creatorcontrib><description>A method for manufacturing a component of an electrochemical energy storage device utilizes lithium such that a coating method based on pulsed laser ablation is utilized in the production of an ion-conducting inorganic material layer on at least one surface of a lithium metal anode. At least one material layer is processed by thermal, mechanical, or thermomechanical treatment or by combination of any of these treatments after pulsed laser deposition. A roll-to-roll method can be used in the deposition, in which the substrate to be coated is directed from one roll to the second roll, and the deposition takes place in the area between the rolls. Moving and/or turning mirrors can be used to direct laser pulses as a beam line array to the surface of the target material.</description><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; CAPACITORS ; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES ORLIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRICITY ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240425&DB=EPODOC&CC=US&NR=2024136495A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240425&DB=EPODOC&CC=US&NR=2024136495A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KEKKONEN, Ville</creatorcontrib><creatorcontrib>LIIMATAINEN, Jari</creatorcontrib><title>METHOD FOR MANUFACTURING AN ELECTROCHEMICAL COMPONENT COMPRISING A LITHIUM METAL ANODE AND AN ION-CONDUCTIVE INORGANIC MATERIAL LAYER</title><description>A method for manufacturing a component of an electrochemical energy storage device utilizes lithium such that a coating method based on pulsed laser ablation is utilized in the production of an ion-conducting inorganic material layer on at least one surface of a lithium metal anode. At least one material layer is processed by thermal, mechanical, or thermomechanical treatment or by combination of any of these treatments after pulsed laser deposition. A roll-to-roll method can be used in the deposition, in which the substrate to be coated is directed from one roll to the second roll, and the deposition takes place in the area between the rolls. Moving and/or turning mirrors can be used to direct laser pulses as a beam line array to the surface of the target material.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CAPACITORS</subject><subject>CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES ORLIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRICITY</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTEKAjEQRbexEPUOAWtB3VWwDJNZM5DMSEwEKxGJlejCegXvbRQPYPP_Lx7vD6uXx2jFqFaC8ppTqyGmQLxVmhU6hBgELHoC7RSI3wkjx-8KtP9yylG0lLwqqgJpFoMlzcdAwjMQNgkiHVARS9hqJihfEQMV3OkjhnE1uJ5vfZ78elRNW4xgZ7l7nHLfnS_5np-ntF_Ol82iXjeblV7U_1Fvjc4-aw</recordid><startdate>20240425</startdate><enddate>20240425</enddate><creator>KEKKONEN, Ville</creator><creator>LIIMATAINEN, Jari</creator><scope>EVB</scope></search><sort><creationdate>20240425</creationdate><title>METHOD FOR MANUFACTURING AN ELECTROCHEMICAL COMPONENT COMPRISING A LITHIUM METAL ANODE AND AN ION-CONDUCTIVE INORGANIC MATERIAL LAYER</title><author>KEKKONEN, Ville ; LIIMATAINEN, Jari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024136495A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CAPACITORS</topic><topic>CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES ORLIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRICITY</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>KEKKONEN, Ville</creatorcontrib><creatorcontrib>LIIMATAINEN, Jari</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KEKKONEN, Ville</au><au>LIIMATAINEN, Jari</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD FOR MANUFACTURING AN ELECTROCHEMICAL COMPONENT COMPRISING A LITHIUM METAL ANODE AND AN ION-CONDUCTIVE INORGANIC MATERIAL LAYER</title><date>2024-04-25</date><risdate>2024</risdate><abstract>A method for manufacturing a component of an electrochemical energy storage device utilizes lithium such that a coating method based on pulsed laser ablation is utilized in the production of an ion-conducting inorganic material layer on at least one surface of a lithium metal anode. At least one material layer is processed by thermal, mechanical, or thermomechanical treatment or by combination of any of these treatments after pulsed laser deposition. A roll-to-roll method can be used in the deposition, in which the substrate to be coated is directed from one roll to the second roll, and the deposition takes place in the area between the rolls. Moving and/or turning mirrors can be used to direct laser pulses as a beam line array to the surface of the target material.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024136495A1 |
source | esp@cenet |
subjects | BASIC ELECTRIC ELEMENTS CAPACITORS CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES ORLIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL ELECTRICITY INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL METALLURGY PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION |
title | METHOD FOR MANUFACTURING AN ELECTROCHEMICAL COMPONENT COMPRISING A LITHIUM METAL ANODE AND AN ION-CONDUCTIVE INORGANIC MATERIAL LAYER |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KEKKONEN,%20Ville&rft.date=2024-04-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024136495A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |