AUTOMATICALLY GENERATING AND IMPLEMENTING MACHINE LEARNING MODEL PIPELINES
The present disclosure relates to systems, non-transitory computer-readable media, and methods for automatically generating and executing machine learning pipelines based on a variety of user selections of various settings, machine learning structures, and other machine learning pipeline criteria. I...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Teoh, Frank Tompkins, Michael Tobkin, Greg Jain, Akshay Agarwal, Peeyush Zhong, Yunfan Guntury, Sashidhar |
description | The present disclosure relates to systems, non-transitory computer-readable media, and methods for automatically generating and executing machine learning pipelines based on a variety of user selections of various settings, machine learning structures, and other machine learning pipeline criteria. In particular, in one or more embodiments, the disclosed systems utilize user input selecting various machine learning pipeline settings to generate machine learning model pipeline files. Further, the disclosed systems execute and deploy the machine learning pipelines based on user-selected schedules. In some embodiments, the disclosed systems also register the machine learning pipelines and associated machine learning pipeline data in a machine learning pipeline registry. Further, the disclosed systems can generate and provide a machine learning pipeline graphical user interface for monitoring and managing machine learning pipelines. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024119364A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024119364A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024119364A13</originalsourceid><addsrcrecordid>eNrjZPByDA3x93UM8XR29PGJVHB39XMNAvL83BUc_VwUPH0DfFx9Xf3AAr6Ozh6efq4KPq6OQX5gAX8XVx-FAM8AVx-geDAPA2taYk5xKi-U5mZQdnMNcfbQTS3Ij08tLkhMTs1LLYkPDTYyMDIxNLQ0NjNxNDQmThUALl8ufQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUTOMATICALLY GENERATING AND IMPLEMENTING MACHINE LEARNING MODEL PIPELINES</title><source>esp@cenet</source><creator>Teoh, Frank ; Tompkins, Michael ; Tobkin, Greg ; Jain, Akshay ; Agarwal, Peeyush ; Zhong, Yunfan ; Guntury, Sashidhar</creator><creatorcontrib>Teoh, Frank ; Tompkins, Michael ; Tobkin, Greg ; Jain, Akshay ; Agarwal, Peeyush ; Zhong, Yunfan ; Guntury, Sashidhar</creatorcontrib><description>The present disclosure relates to systems, non-transitory computer-readable media, and methods for automatically generating and executing machine learning pipelines based on a variety of user selections of various settings, machine learning structures, and other machine learning pipeline criteria. In particular, in one or more embodiments, the disclosed systems utilize user input selecting various machine learning pipeline settings to generate machine learning model pipeline files. Further, the disclosed systems execute and deploy the machine learning pipelines based on user-selected schedules. In some embodiments, the disclosed systems also register the machine learning pipelines and associated machine learning pipeline data in a machine learning pipeline registry. Further, the disclosed systems can generate and provide a machine learning pipeline graphical user interface for monitoring and managing machine learning pipelines.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240411&DB=EPODOC&CC=US&NR=2024119364A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240411&DB=EPODOC&CC=US&NR=2024119364A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Teoh, Frank</creatorcontrib><creatorcontrib>Tompkins, Michael</creatorcontrib><creatorcontrib>Tobkin, Greg</creatorcontrib><creatorcontrib>Jain, Akshay</creatorcontrib><creatorcontrib>Agarwal, Peeyush</creatorcontrib><creatorcontrib>Zhong, Yunfan</creatorcontrib><creatorcontrib>Guntury, Sashidhar</creatorcontrib><title>AUTOMATICALLY GENERATING AND IMPLEMENTING MACHINE LEARNING MODEL PIPELINES</title><description>The present disclosure relates to systems, non-transitory computer-readable media, and methods for automatically generating and executing machine learning pipelines based on a variety of user selections of various settings, machine learning structures, and other machine learning pipeline criteria. In particular, in one or more embodiments, the disclosed systems utilize user input selecting various machine learning pipeline settings to generate machine learning model pipeline files. Further, the disclosed systems execute and deploy the machine learning pipelines based on user-selected schedules. In some embodiments, the disclosed systems also register the machine learning pipelines and associated machine learning pipeline data in a machine learning pipeline registry. Further, the disclosed systems can generate and provide a machine learning pipeline graphical user interface for monitoring and managing machine learning pipelines.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPByDA3x93UM8XR29PGJVHB39XMNAvL83BUc_VwUPH0DfFx9Xf3AAr6Ozh6efq4KPq6OQX5gAX8XVx-FAM8AVx-geDAPA2taYk5xKi-U5mZQdnMNcfbQTS3Ij08tLkhMTs1LLYkPDTYyMDIxNLQ0NjNxNDQmThUALl8ufQ</recordid><startdate>20240411</startdate><enddate>20240411</enddate><creator>Teoh, Frank</creator><creator>Tompkins, Michael</creator><creator>Tobkin, Greg</creator><creator>Jain, Akshay</creator><creator>Agarwal, Peeyush</creator><creator>Zhong, Yunfan</creator><creator>Guntury, Sashidhar</creator><scope>EVB</scope></search><sort><creationdate>20240411</creationdate><title>AUTOMATICALLY GENERATING AND IMPLEMENTING MACHINE LEARNING MODEL PIPELINES</title><author>Teoh, Frank ; Tompkins, Michael ; Tobkin, Greg ; Jain, Akshay ; Agarwal, Peeyush ; Zhong, Yunfan ; Guntury, Sashidhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024119364A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Teoh, Frank</creatorcontrib><creatorcontrib>Tompkins, Michael</creatorcontrib><creatorcontrib>Tobkin, Greg</creatorcontrib><creatorcontrib>Jain, Akshay</creatorcontrib><creatorcontrib>Agarwal, Peeyush</creatorcontrib><creatorcontrib>Zhong, Yunfan</creatorcontrib><creatorcontrib>Guntury, Sashidhar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Teoh, Frank</au><au>Tompkins, Michael</au><au>Tobkin, Greg</au><au>Jain, Akshay</au><au>Agarwal, Peeyush</au><au>Zhong, Yunfan</au><au>Guntury, Sashidhar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUTOMATICALLY GENERATING AND IMPLEMENTING MACHINE LEARNING MODEL PIPELINES</title><date>2024-04-11</date><risdate>2024</risdate><abstract>The present disclosure relates to systems, non-transitory computer-readable media, and methods for automatically generating and executing machine learning pipelines based on a variety of user selections of various settings, machine learning structures, and other machine learning pipeline criteria. In particular, in one or more embodiments, the disclosed systems utilize user input selecting various machine learning pipeline settings to generate machine learning model pipeline files. Further, the disclosed systems execute and deploy the machine learning pipelines based on user-selected schedules. In some embodiments, the disclosed systems also register the machine learning pipelines and associated machine learning pipeline data in a machine learning pipeline registry. Further, the disclosed systems can generate and provide a machine learning pipeline graphical user interface for monitoring and managing machine learning pipelines.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024119364A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | AUTOMATICALLY GENERATING AND IMPLEMENTING MACHINE LEARNING MODEL PIPELINES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Teoh,%20Frank&rft.date=2024-04-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024119364A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |