AUTOMATICALLY GENERATING AND IMPLEMENTING MACHINE LEARNING MODEL PIPELINES

The present disclosure relates to systems, non-transitory computer-readable media, and methods for automatically generating and executing machine learning pipelines based on a variety of user selections of various settings, machine learning structures, and other machine learning pipeline criteria. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Teoh, Frank, Tompkins, Michael, Tobkin, Greg, Jain, Akshay, Agarwal, Peeyush, Zhong, Yunfan, Guntury, Sashidhar
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Teoh, Frank
Tompkins, Michael
Tobkin, Greg
Jain, Akshay
Agarwal, Peeyush
Zhong, Yunfan
Guntury, Sashidhar
description The present disclosure relates to systems, non-transitory computer-readable media, and methods for automatically generating and executing machine learning pipelines based on a variety of user selections of various settings, machine learning structures, and other machine learning pipeline criteria. In particular, in one or more embodiments, the disclosed systems utilize user input selecting various machine learning pipeline settings to generate machine learning model pipeline files. Further, the disclosed systems execute and deploy the machine learning pipelines based on user-selected schedules. In some embodiments, the disclosed systems also register the machine learning pipelines and associated machine learning pipeline data in a machine learning pipeline registry. Further, the disclosed systems can generate and provide a machine learning pipeline graphical user interface for monitoring and managing machine learning pipelines.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024119364A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024119364A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024119364A13</originalsourceid><addsrcrecordid>eNrjZPByDA3x93UM8XR29PGJVHB39XMNAvL83BUc_VwUPH0DfFx9Xf3AAr6Ozh6efq4KPq6OQX5gAX8XVx-FAM8AVx-geDAPA2taYk5xKi-U5mZQdnMNcfbQTS3Ij08tLkhMTs1LLYkPDTYyMDIxNLQ0NjNxNDQmThUALl8ufQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUTOMATICALLY GENERATING AND IMPLEMENTING MACHINE LEARNING MODEL PIPELINES</title><source>esp@cenet</source><creator>Teoh, Frank ; Tompkins, Michael ; Tobkin, Greg ; Jain, Akshay ; Agarwal, Peeyush ; Zhong, Yunfan ; Guntury, Sashidhar</creator><creatorcontrib>Teoh, Frank ; Tompkins, Michael ; Tobkin, Greg ; Jain, Akshay ; Agarwal, Peeyush ; Zhong, Yunfan ; Guntury, Sashidhar</creatorcontrib><description>The present disclosure relates to systems, non-transitory computer-readable media, and methods for automatically generating and executing machine learning pipelines based on a variety of user selections of various settings, machine learning structures, and other machine learning pipeline criteria. In particular, in one or more embodiments, the disclosed systems utilize user input selecting various machine learning pipeline settings to generate machine learning model pipeline files. Further, the disclosed systems execute and deploy the machine learning pipelines based on user-selected schedules. In some embodiments, the disclosed systems also register the machine learning pipelines and associated machine learning pipeline data in a machine learning pipeline registry. Further, the disclosed systems can generate and provide a machine learning pipeline graphical user interface for monitoring and managing machine learning pipelines.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240411&amp;DB=EPODOC&amp;CC=US&amp;NR=2024119364A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240411&amp;DB=EPODOC&amp;CC=US&amp;NR=2024119364A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Teoh, Frank</creatorcontrib><creatorcontrib>Tompkins, Michael</creatorcontrib><creatorcontrib>Tobkin, Greg</creatorcontrib><creatorcontrib>Jain, Akshay</creatorcontrib><creatorcontrib>Agarwal, Peeyush</creatorcontrib><creatorcontrib>Zhong, Yunfan</creatorcontrib><creatorcontrib>Guntury, Sashidhar</creatorcontrib><title>AUTOMATICALLY GENERATING AND IMPLEMENTING MACHINE LEARNING MODEL PIPELINES</title><description>The present disclosure relates to systems, non-transitory computer-readable media, and methods for automatically generating and executing machine learning pipelines based on a variety of user selections of various settings, machine learning structures, and other machine learning pipeline criteria. In particular, in one or more embodiments, the disclosed systems utilize user input selecting various machine learning pipeline settings to generate machine learning model pipeline files. Further, the disclosed systems execute and deploy the machine learning pipelines based on user-selected schedules. In some embodiments, the disclosed systems also register the machine learning pipelines and associated machine learning pipeline data in a machine learning pipeline registry. Further, the disclosed systems can generate and provide a machine learning pipeline graphical user interface for monitoring and managing machine learning pipelines.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPByDA3x93UM8XR29PGJVHB39XMNAvL83BUc_VwUPH0DfFx9Xf3AAr6Ozh6efq4KPq6OQX5gAX8XVx-FAM8AVx-geDAPA2taYk5xKi-U5mZQdnMNcfbQTS3Ij08tLkhMTs1LLYkPDTYyMDIxNLQ0NjNxNDQmThUALl8ufQ</recordid><startdate>20240411</startdate><enddate>20240411</enddate><creator>Teoh, Frank</creator><creator>Tompkins, Michael</creator><creator>Tobkin, Greg</creator><creator>Jain, Akshay</creator><creator>Agarwal, Peeyush</creator><creator>Zhong, Yunfan</creator><creator>Guntury, Sashidhar</creator><scope>EVB</scope></search><sort><creationdate>20240411</creationdate><title>AUTOMATICALLY GENERATING AND IMPLEMENTING MACHINE LEARNING MODEL PIPELINES</title><author>Teoh, Frank ; Tompkins, Michael ; Tobkin, Greg ; Jain, Akshay ; Agarwal, Peeyush ; Zhong, Yunfan ; Guntury, Sashidhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024119364A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Teoh, Frank</creatorcontrib><creatorcontrib>Tompkins, Michael</creatorcontrib><creatorcontrib>Tobkin, Greg</creatorcontrib><creatorcontrib>Jain, Akshay</creatorcontrib><creatorcontrib>Agarwal, Peeyush</creatorcontrib><creatorcontrib>Zhong, Yunfan</creatorcontrib><creatorcontrib>Guntury, Sashidhar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Teoh, Frank</au><au>Tompkins, Michael</au><au>Tobkin, Greg</au><au>Jain, Akshay</au><au>Agarwal, Peeyush</au><au>Zhong, Yunfan</au><au>Guntury, Sashidhar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUTOMATICALLY GENERATING AND IMPLEMENTING MACHINE LEARNING MODEL PIPELINES</title><date>2024-04-11</date><risdate>2024</risdate><abstract>The present disclosure relates to systems, non-transitory computer-readable media, and methods for automatically generating and executing machine learning pipelines based on a variety of user selections of various settings, machine learning structures, and other machine learning pipeline criteria. In particular, in one or more embodiments, the disclosed systems utilize user input selecting various machine learning pipeline settings to generate machine learning model pipeline files. Further, the disclosed systems execute and deploy the machine learning pipelines based on user-selected schedules. In some embodiments, the disclosed systems also register the machine learning pipelines and associated machine learning pipeline data in a machine learning pipeline registry. Further, the disclosed systems can generate and provide a machine learning pipeline graphical user interface for monitoring and managing machine learning pipelines.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024119364A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title AUTOMATICALLY GENERATING AND IMPLEMENTING MACHINE LEARNING MODEL PIPELINES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Teoh,%20Frank&rft.date=2024-04-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024119364A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true