WEIGHT-SPARSE NPU WITH FINE-GRAINED STRUCTURED SPARSITY

A neural processing unit is reconfigurable to process a fine-grain structured sparsity weight arrangement selected from N:M=1:4, 2:4, 2:8 and 4:8 fine-grain structured weight sparsity arrangements. A weight buffer stores weight values and a weight multiplexer array outputs one or more weight values...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHIN, Jong Hoon, PEDRAM, Ardavan, HASSOUN, Joseph
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHIN, Jong Hoon
PEDRAM, Ardavan
HASSOUN, Joseph
description A neural processing unit is reconfigurable to process a fine-grain structured sparsity weight arrangement selected from N:M=1:4, 2:4, 2:8 and 4:8 fine-grain structured weight sparsity arrangements. A weight buffer stores weight values and a weight multiplexer array outputs one or more weight values stored in the weight buffer as first operand values based on a selected fine-grain structured sparsity weight arrangement. An activation buffer stores activation values and an activation multiplexer array outputs one or more activation values stored in the activation buffer as second operand values based on the selected fine-grain structured weight sparsity in which each respective second operand value and a corresponding first operand value forms an operand value pair. A multiplier array outputs a product value for each operand value pair.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024119270A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024119270A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024119270A13</originalsourceid><addsrcrecordid>eNrjZDAPd_V09wjRDQ5wDAp2VfALCFUI9wzxUHDz9HPVdQ9yBFIuCsEhQaHOIaFBICZInWdIJA8Da1piTnEqL5TmZlB2cw1x9tBNLciPTy0uSExOzUstiQ8NNjIwMjE0tDQyN3A0NCZOFQAEQCl5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>WEIGHT-SPARSE NPU WITH FINE-GRAINED STRUCTURED SPARSITY</title><source>esp@cenet</source><creator>SHIN, Jong Hoon ; PEDRAM, Ardavan ; HASSOUN, Joseph</creator><creatorcontrib>SHIN, Jong Hoon ; PEDRAM, Ardavan ; HASSOUN, Joseph</creatorcontrib><description>A neural processing unit is reconfigurable to process a fine-grain structured sparsity weight arrangement selected from N:M=1:4, 2:4, 2:8 and 4:8 fine-grain structured weight sparsity arrangements. A weight buffer stores weight values and a weight multiplexer array outputs one or more weight values stored in the weight buffer as first operand values based on a selected fine-grain structured sparsity weight arrangement. An activation buffer stores activation values and an activation multiplexer array outputs one or more activation values stored in the activation buffer as second operand values based on the selected fine-grain structured weight sparsity in which each respective second operand value and a corresponding first operand value forms an operand value pair. A multiplier array outputs a product value for each operand value pair.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240411&amp;DB=EPODOC&amp;CC=US&amp;NR=2024119270A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240411&amp;DB=EPODOC&amp;CC=US&amp;NR=2024119270A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHIN, Jong Hoon</creatorcontrib><creatorcontrib>PEDRAM, Ardavan</creatorcontrib><creatorcontrib>HASSOUN, Joseph</creatorcontrib><title>WEIGHT-SPARSE NPU WITH FINE-GRAINED STRUCTURED SPARSITY</title><description>A neural processing unit is reconfigurable to process a fine-grain structured sparsity weight arrangement selected from N:M=1:4, 2:4, 2:8 and 4:8 fine-grain structured weight sparsity arrangements. A weight buffer stores weight values and a weight multiplexer array outputs one or more weight values stored in the weight buffer as first operand values based on a selected fine-grain structured sparsity weight arrangement. An activation buffer stores activation values and an activation multiplexer array outputs one or more activation values stored in the activation buffer as second operand values based on the selected fine-grain structured weight sparsity in which each respective second operand value and a corresponding first operand value forms an operand value pair. A multiplier array outputs a product value for each operand value pair.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAPd_V09wjRDQ5wDAp2VfALCFUI9wzxUHDz9HPVdQ9yBFIuCsEhQaHOIaFBICZInWdIJA8Da1piTnEqL5TmZlB2cw1x9tBNLciPTy0uSExOzUstiQ8NNjIwMjE0tDQyN3A0NCZOFQAEQCl5</recordid><startdate>20240411</startdate><enddate>20240411</enddate><creator>SHIN, Jong Hoon</creator><creator>PEDRAM, Ardavan</creator><creator>HASSOUN, Joseph</creator><scope>EVB</scope></search><sort><creationdate>20240411</creationdate><title>WEIGHT-SPARSE NPU WITH FINE-GRAINED STRUCTURED SPARSITY</title><author>SHIN, Jong Hoon ; PEDRAM, Ardavan ; HASSOUN, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024119270A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHIN, Jong Hoon</creatorcontrib><creatorcontrib>PEDRAM, Ardavan</creatorcontrib><creatorcontrib>HASSOUN, Joseph</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHIN, Jong Hoon</au><au>PEDRAM, Ardavan</au><au>HASSOUN, Joseph</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>WEIGHT-SPARSE NPU WITH FINE-GRAINED STRUCTURED SPARSITY</title><date>2024-04-11</date><risdate>2024</risdate><abstract>A neural processing unit is reconfigurable to process a fine-grain structured sparsity weight arrangement selected from N:M=1:4, 2:4, 2:8 and 4:8 fine-grain structured weight sparsity arrangements. A weight buffer stores weight values and a weight multiplexer array outputs one or more weight values stored in the weight buffer as first operand values based on a selected fine-grain structured sparsity weight arrangement. An activation buffer stores activation values and an activation multiplexer array outputs one or more activation values stored in the activation buffer as second operand values based on the selected fine-grain structured weight sparsity in which each respective second operand value and a corresponding first operand value forms an operand value pair. A multiplier array outputs a product value for each operand value pair.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024119270A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title WEIGHT-SPARSE NPU WITH FINE-GRAINED STRUCTURED SPARSITY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHIN,%20Jong%20Hoon&rft.date=2024-04-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024119270A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true