NEURAL NETWORK ARCHITECTURE SEARCH OVER COMPLEX BLOCK ARCHITECTURES

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing neural architecture search for machine learning models. In one aspect, a method comprises receiving training data for a machine learning, generating a plurality of candidate neural netwo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhou, Yanqi, So, David Richard, Lan, Chang, Cui, Yingwei, Shakeri, Siamak, Le, Quoc V, Huang, Da, Chen, Zhifeng, Laudon, James, Peng, Daiyi, Huang, Yanping, Lu, Yifeng, Dai, Andrew M, Du, Nan, Dean, Jeffrey Adgate
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Zhou, Yanqi
So, David Richard
Lan, Chang
Cui, Yingwei
Shakeri, Siamak
Le, Quoc V
Huang, Da
Chen, Zhifeng
Laudon, James
Peng, Daiyi
Huang, Yanping
Lu, Yifeng
Dai, Andrew M
Du, Nan
Dean, Jeffrey Adgate
description Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing neural architecture search for machine learning models. In one aspect, a method comprises receiving training data for a machine learning, generating a plurality of candidate neural networks for performing the machine learning task, wherein each candidate neural network comprises a plurality of instances of a layer block composed of a plurality of layers, for each candidate neural network, selecting a respective type for each of the plurality of layers from a set of layer types that comprises, training the candidate neural network and evaluating performance scores for the trained candidate neural networks as applied to the machine learning task, and determining a final neural network for performing the machine learning task based at least on the performance scores for the candidate neural networks.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024112027A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024112027A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024112027A13</originalsourceid><addsrcrecordid>eNrjZHD2cw0NcvRR8HMNCfcP8lZwDHL28AxxdQ4JDXJVCHYFcRX8w1yDFJz9fQN8XCMUnHz8nVGVBfMwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDIxNDQyBp7mhoTJwqAAA7LKc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>NEURAL NETWORK ARCHITECTURE SEARCH OVER COMPLEX BLOCK ARCHITECTURES</title><source>esp@cenet</source><creator>Zhou, Yanqi ; So, David Richard ; Lan, Chang ; Cui, Yingwei ; Shakeri, Siamak ; Le, Quoc V ; Huang, Da ; Chen, Zhifeng ; Laudon, James ; Peng, Daiyi ; Huang, Yanping ; Lu, Yifeng ; Dai, Andrew M ; Du, Nan ; Dean, Jeffrey Adgate</creator><creatorcontrib>Zhou, Yanqi ; So, David Richard ; Lan, Chang ; Cui, Yingwei ; Shakeri, Siamak ; Le, Quoc V ; Huang, Da ; Chen, Zhifeng ; Laudon, James ; Peng, Daiyi ; Huang, Yanping ; Lu, Yifeng ; Dai, Andrew M ; Du, Nan ; Dean, Jeffrey Adgate</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing neural architecture search for machine learning models. In one aspect, a method comprises receiving training data for a machine learning, generating a plurality of candidate neural networks for performing the machine learning task, wherein each candidate neural network comprises a plurality of instances of a layer block composed of a plurality of layers, for each candidate neural network, selecting a respective type for each of the plurality of layers from a set of layer types that comprises, training the candidate neural network and evaluating performance scores for the trained candidate neural networks as applied to the machine learning task, and determining a final neural network for performing the machine learning task based at least on the performance scores for the candidate neural networks.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240404&amp;DB=EPODOC&amp;CC=US&amp;NR=2024112027A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240404&amp;DB=EPODOC&amp;CC=US&amp;NR=2024112027A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Zhou, Yanqi</creatorcontrib><creatorcontrib>So, David Richard</creatorcontrib><creatorcontrib>Lan, Chang</creatorcontrib><creatorcontrib>Cui, Yingwei</creatorcontrib><creatorcontrib>Shakeri, Siamak</creatorcontrib><creatorcontrib>Le, Quoc V</creatorcontrib><creatorcontrib>Huang, Da</creatorcontrib><creatorcontrib>Chen, Zhifeng</creatorcontrib><creatorcontrib>Laudon, James</creatorcontrib><creatorcontrib>Peng, Daiyi</creatorcontrib><creatorcontrib>Huang, Yanping</creatorcontrib><creatorcontrib>Lu, Yifeng</creatorcontrib><creatorcontrib>Dai, Andrew M</creatorcontrib><creatorcontrib>Du, Nan</creatorcontrib><creatorcontrib>Dean, Jeffrey Adgate</creatorcontrib><title>NEURAL NETWORK ARCHITECTURE SEARCH OVER COMPLEX BLOCK ARCHITECTURES</title><description>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing neural architecture search for machine learning models. In one aspect, a method comprises receiving training data for a machine learning, generating a plurality of candidate neural networks for performing the machine learning task, wherein each candidate neural network comprises a plurality of instances of a layer block composed of a plurality of layers, for each candidate neural network, selecting a respective type for each of the plurality of layers from a set of layer types that comprises, training the candidate neural network and evaluating performance scores for the trained candidate neural networks as applied to the machine learning task, and determining a final neural network for performing the machine learning task based at least on the performance scores for the candidate neural networks.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD2cw0NcvRR8HMNCfcP8lZwDHL28AxxdQ4JDXJVCHYFcRX8w1yDFJz9fQN8XCMUnHz8nVGVBfMwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDIxNDQyBp7mhoTJwqAAA7LKc</recordid><startdate>20240404</startdate><enddate>20240404</enddate><creator>Zhou, Yanqi</creator><creator>So, David Richard</creator><creator>Lan, Chang</creator><creator>Cui, Yingwei</creator><creator>Shakeri, Siamak</creator><creator>Le, Quoc V</creator><creator>Huang, Da</creator><creator>Chen, Zhifeng</creator><creator>Laudon, James</creator><creator>Peng, Daiyi</creator><creator>Huang, Yanping</creator><creator>Lu, Yifeng</creator><creator>Dai, Andrew M</creator><creator>Du, Nan</creator><creator>Dean, Jeffrey Adgate</creator><scope>EVB</scope></search><sort><creationdate>20240404</creationdate><title>NEURAL NETWORK ARCHITECTURE SEARCH OVER COMPLEX BLOCK ARCHITECTURES</title><author>Zhou, Yanqi ; So, David Richard ; Lan, Chang ; Cui, Yingwei ; Shakeri, Siamak ; Le, Quoc V ; Huang, Da ; Chen, Zhifeng ; Laudon, James ; Peng, Daiyi ; Huang, Yanping ; Lu, Yifeng ; Dai, Andrew M ; Du, Nan ; Dean, Jeffrey Adgate</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024112027A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yanqi</creatorcontrib><creatorcontrib>So, David Richard</creatorcontrib><creatorcontrib>Lan, Chang</creatorcontrib><creatorcontrib>Cui, Yingwei</creatorcontrib><creatorcontrib>Shakeri, Siamak</creatorcontrib><creatorcontrib>Le, Quoc V</creatorcontrib><creatorcontrib>Huang, Da</creatorcontrib><creatorcontrib>Chen, Zhifeng</creatorcontrib><creatorcontrib>Laudon, James</creatorcontrib><creatorcontrib>Peng, Daiyi</creatorcontrib><creatorcontrib>Huang, Yanping</creatorcontrib><creatorcontrib>Lu, Yifeng</creatorcontrib><creatorcontrib>Dai, Andrew M</creatorcontrib><creatorcontrib>Du, Nan</creatorcontrib><creatorcontrib>Dean, Jeffrey Adgate</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Yanqi</au><au>So, David Richard</au><au>Lan, Chang</au><au>Cui, Yingwei</au><au>Shakeri, Siamak</au><au>Le, Quoc V</au><au>Huang, Da</au><au>Chen, Zhifeng</au><au>Laudon, James</au><au>Peng, Daiyi</au><au>Huang, Yanping</au><au>Lu, Yifeng</au><au>Dai, Andrew M</au><au>Du, Nan</au><au>Dean, Jeffrey Adgate</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>NEURAL NETWORK ARCHITECTURE SEARCH OVER COMPLEX BLOCK ARCHITECTURES</title><date>2024-04-04</date><risdate>2024</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing neural architecture search for machine learning models. In one aspect, a method comprises receiving training data for a machine learning, generating a plurality of candidate neural networks for performing the machine learning task, wherein each candidate neural network comprises a plurality of instances of a layer block composed of a plurality of layers, for each candidate neural network, selecting a respective type for each of the plurality of layers from a set of layer types that comprises, training the candidate neural network and evaluating performance scores for the trained candidate neural networks as applied to the machine learning task, and determining a final neural network for performing the machine learning task based at least on the performance scores for the candidate neural networks.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024112027A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title NEURAL NETWORK ARCHITECTURE SEARCH OVER COMPLEX BLOCK ARCHITECTURES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Zhou,%20Yanqi&rft.date=2024-04-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024112027A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true