DYNAMIC QUANTIZATION OF NEURAL NETWORKS

An apparatus for applying dynamic quantization of a neural network is described herein. The apparatus includes a scaling unit and a quantizing unit. The scaling unit is to calculate an initial desired scale factors of a plurality of inputs, weights and a bias and apply the input scale factor to a su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Deisher, Michael E
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Deisher, Michael E
description An apparatus for applying dynamic quantization of a neural network is described herein. The apparatus includes a scaling unit and a quantizing unit. The scaling unit is to calculate an initial desired scale factors of a plurality of inputs, weights and a bias and apply the input scale factor to a summation node. Also, the scaling unit is to determine a scale factor for a multiplication node based on the desired scale factors of the inputs and select a scale factor for an activation function and an output node. The quantizing unit is to dynamically requantize the neural network by traversing a graph of the neural network.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024104378A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024104378A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024104378A13</originalsourceid><addsrcrecordid>eNrjZFB3ifRz9PV0VggMdfQL8YxyDPH091Pwd1Pwcw0NcvQBUiHh_kHewTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAyMTQwMTY3MLR0Jg4VQCSGSUF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DYNAMIC QUANTIZATION OF NEURAL NETWORKS</title><source>esp@cenet</source><creator>Deisher, Michael E</creator><creatorcontrib>Deisher, Michael E</creatorcontrib><description>An apparatus for applying dynamic quantization of a neural network is described herein. The apparatus includes a scaling unit and a quantizing unit. The scaling unit is to calculate an initial desired scale factors of a plurality of inputs, weights and a bias and apply the input scale factor to a summation node. Also, the scaling unit is to determine a scale factor for a multiplication node based on the desired scale factors of the inputs and select a scale factor for an activation function and an output node. The quantizing unit is to dynamically requantize the neural network by traversing a graph of the neural network.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240328&amp;DB=EPODOC&amp;CC=US&amp;NR=2024104378A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240328&amp;DB=EPODOC&amp;CC=US&amp;NR=2024104378A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Deisher, Michael E</creatorcontrib><title>DYNAMIC QUANTIZATION OF NEURAL NETWORKS</title><description>An apparatus for applying dynamic quantization of a neural network is described herein. The apparatus includes a scaling unit and a quantizing unit. The scaling unit is to calculate an initial desired scale factors of a plurality of inputs, weights and a bias and apply the input scale factor to a summation node. Also, the scaling unit is to determine a scale factor for a multiplication node based on the desired scale factors of the inputs and select a scale factor for an activation function and an output node. The quantizing unit is to dynamically requantize the neural network by traversing a graph of the neural network.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB3ifRz9PV0VggMdfQL8YxyDPH091Pwd1Pwcw0NcvQBUiHh_kHewTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAyMTQwMTY3MLR0Jg4VQCSGSUF</recordid><startdate>20240328</startdate><enddate>20240328</enddate><creator>Deisher, Michael E</creator><scope>EVB</scope></search><sort><creationdate>20240328</creationdate><title>DYNAMIC QUANTIZATION OF NEURAL NETWORKS</title><author>Deisher, Michael E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024104378A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Deisher, Michael E</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deisher, Michael E</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DYNAMIC QUANTIZATION OF NEURAL NETWORKS</title><date>2024-03-28</date><risdate>2024</risdate><abstract>An apparatus for applying dynamic quantization of a neural network is described herein. The apparatus includes a scaling unit and a quantizing unit. The scaling unit is to calculate an initial desired scale factors of a plurality of inputs, weights and a bias and apply the input scale factor to a summation node. Also, the scaling unit is to determine a scale factor for a multiplication node based on the desired scale factors of the inputs and select a scale factor for an activation function and an output node. The quantizing unit is to dynamically requantize the neural network by traversing a graph of the neural network.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024104378A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title DYNAMIC QUANTIZATION OF NEURAL NETWORKS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Deisher,%20Michael%20E&rft.date=2024-03-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024104378A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true