INTERSECTION DETECTION AND CLASSIFICATION IN AUTONOMOUS MACHINE APPLICATIONS

In various examples, live perception from sensors of a vehicle may be leveraged to detect and classify intersections in an environment of a vehicle in real-time or near real-time. For example, a deep neural network (DNN) may be trained to compute various outputs-such as bounding box coordinates for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cvijetic, Neda, Sajjadi Mohammadabadi, Sayed Mehdi, Park, Minwoo, Hervas, Berta Rodriguez, Pham, Trung, Kwon, Junghyun, Dou, Hang, Nister, David, Tryndin, Igor
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Cvijetic, Neda
Sajjadi Mohammadabadi, Sayed Mehdi
Park, Minwoo
Hervas, Berta Rodriguez
Pham, Trung
Kwon, Junghyun
Dou, Hang
Nister, David
Tryndin, Igor
description In various examples, live perception from sensors of a vehicle may be leveraged to detect and classify intersections in an environment of a vehicle in real-time or near real-time. For example, a deep neural network (DNN) may be trained to compute various outputs-such as bounding box coordinates for intersections, intersection coverage maps corresponding to the bounding boxes, intersection attributes, distances to intersections, and/or distance coverage maps associated with the intersections. The outputs may be decoded and/or post-processed to determine final locations of, distances to, and/or attributes of the detected intersections.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024101118A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024101118A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024101118A13</originalsourceid><addsrcrecordid>eNrjZPDx9AtxDQp2dQ7x9PdTcHENgbIc_VwUnH0cg4M93TydHcFCnkDR0BB_P39f_9BgBV9HZw9PP1cFx4AAH6iKYB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGJoYGhoaOFoaEycKgCkQi8x</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>INTERSECTION DETECTION AND CLASSIFICATION IN AUTONOMOUS MACHINE APPLICATIONS</title><source>esp@cenet</source><creator>Cvijetic, Neda ; Sajjadi Mohammadabadi, Sayed Mehdi ; Park, Minwoo ; Hervas, Berta Rodriguez ; Pham, Trung ; Kwon, Junghyun ; Dou, Hang ; Nister, David ; Tryndin, Igor</creator><creatorcontrib>Cvijetic, Neda ; Sajjadi Mohammadabadi, Sayed Mehdi ; Park, Minwoo ; Hervas, Berta Rodriguez ; Pham, Trung ; Kwon, Junghyun ; Dou, Hang ; Nister, David ; Tryndin, Igor</creatorcontrib><description>In various examples, live perception from sensors of a vehicle may be leveraged to detect and classify intersections in an environment of a vehicle in real-time or near real-time. For example, a deep neural network (DNN) may be trained to compute various outputs-such as bounding box coordinates for intersections, intersection coverage maps corresponding to the bounding boxes, intersection attributes, distances to intersections, and/or distance coverage maps associated with the intersections. The outputs may be decoded and/or post-processed to determine final locations of, distances to, and/or attributes of the detected intersections.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION ; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES ; COUNTING ; PERFORMING OPERATIONS ; PHYSICS ; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT ; SIGNALLING ; TRAFFIC CONTROL SYSTEMS ; TRANSPORTING ; VEHICLES IN GENERAL</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240328&amp;DB=EPODOC&amp;CC=US&amp;NR=2024101118A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240328&amp;DB=EPODOC&amp;CC=US&amp;NR=2024101118A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Cvijetic, Neda</creatorcontrib><creatorcontrib>Sajjadi Mohammadabadi, Sayed Mehdi</creatorcontrib><creatorcontrib>Park, Minwoo</creatorcontrib><creatorcontrib>Hervas, Berta Rodriguez</creatorcontrib><creatorcontrib>Pham, Trung</creatorcontrib><creatorcontrib>Kwon, Junghyun</creatorcontrib><creatorcontrib>Dou, Hang</creatorcontrib><creatorcontrib>Nister, David</creatorcontrib><creatorcontrib>Tryndin, Igor</creatorcontrib><title>INTERSECTION DETECTION AND CLASSIFICATION IN AUTONOMOUS MACHINE APPLICATIONS</title><description>In various examples, live perception from sensors of a vehicle may be leveraged to detect and classify intersections in an environment of a vehicle in real-time or near real-time. For example, a deep neural network (DNN) may be trained to compute various outputs-such as bounding box coordinates for intersections, intersection coverage maps corresponding to the bounding boxes, intersection attributes, distances to intersections, and/or distance coverage maps associated with the intersections. The outputs may be decoded and/or post-processed to determine final locations of, distances to, and/or attributes of the detected intersections.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION</subject><subject>CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES</subject><subject>COUNTING</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT</subject><subject>SIGNALLING</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><subject>TRANSPORTING</subject><subject>VEHICLES IN GENERAL</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPDx9AtxDQp2dQ7x9PdTcHENgbIc_VwUnH0cg4M93TydHcFCnkDR0BB_P39f_9BgBV9HZw9PP1cFx4AAH6iKYB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGJoYGhoaOFoaEycKgCkQi8x</recordid><startdate>20240328</startdate><enddate>20240328</enddate><creator>Cvijetic, Neda</creator><creator>Sajjadi Mohammadabadi, Sayed Mehdi</creator><creator>Park, Minwoo</creator><creator>Hervas, Berta Rodriguez</creator><creator>Pham, Trung</creator><creator>Kwon, Junghyun</creator><creator>Dou, Hang</creator><creator>Nister, David</creator><creator>Tryndin, Igor</creator><scope>EVB</scope></search><sort><creationdate>20240328</creationdate><title>INTERSECTION DETECTION AND CLASSIFICATION IN AUTONOMOUS MACHINE APPLICATIONS</title><author>Cvijetic, Neda ; Sajjadi Mohammadabadi, Sayed Mehdi ; Park, Minwoo ; Hervas, Berta Rodriguez ; Pham, Trung ; Kwon, Junghyun ; Dou, Hang ; Nister, David ; Tryndin, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024101118A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION</topic><topic>CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES</topic><topic>COUNTING</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT</topic><topic>SIGNALLING</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><topic>TRANSPORTING</topic><topic>VEHICLES IN GENERAL</topic><toplevel>online_resources</toplevel><creatorcontrib>Cvijetic, Neda</creatorcontrib><creatorcontrib>Sajjadi Mohammadabadi, Sayed Mehdi</creatorcontrib><creatorcontrib>Park, Minwoo</creatorcontrib><creatorcontrib>Hervas, Berta Rodriguez</creatorcontrib><creatorcontrib>Pham, Trung</creatorcontrib><creatorcontrib>Kwon, Junghyun</creatorcontrib><creatorcontrib>Dou, Hang</creatorcontrib><creatorcontrib>Nister, David</creatorcontrib><creatorcontrib>Tryndin, Igor</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cvijetic, Neda</au><au>Sajjadi Mohammadabadi, Sayed Mehdi</au><au>Park, Minwoo</au><au>Hervas, Berta Rodriguez</au><au>Pham, Trung</au><au>Kwon, Junghyun</au><au>Dou, Hang</au><au>Nister, David</au><au>Tryndin, Igor</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>INTERSECTION DETECTION AND CLASSIFICATION IN AUTONOMOUS MACHINE APPLICATIONS</title><date>2024-03-28</date><risdate>2024</risdate><abstract>In various examples, live perception from sensors of a vehicle may be leveraged to detect and classify intersections in an environment of a vehicle in real-time or near real-time. For example, a deep neural network (DNN) may be trained to compute various outputs-such as bounding box coordinates for intersections, intersection coverage maps corresponding to the bounding boxes, intersection attributes, distances to intersections, and/or distance coverage maps associated with the intersections. The outputs may be decoded and/or post-processed to determine final locations of, distances to, and/or attributes of the detected intersections.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024101118A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION
CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES
COUNTING
PERFORMING OPERATIONS
PHYSICS
ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT
SIGNALLING
TRAFFIC CONTROL SYSTEMS
TRANSPORTING
VEHICLES IN GENERAL
title INTERSECTION DETECTION AND CLASSIFICATION IN AUTONOMOUS MACHINE APPLICATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Cvijetic,%20Neda&rft.date=2024-03-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024101118A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true