DETERMINING PRINCIPAL COMPONENTS USING MULTI-AGENT INTERACTION

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining principal components of a data set using multi-agent interactions. One of the methods includes obtaining initial estimates for a plurality of principal components of a data set; and genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gemp, Ian Michael, McWilliams, Brian
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Gemp, Ian Michael
McWilliams, Brian
description Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining principal components of a data set using multi-agent interactions. One of the methods includes obtaining initial estimates for a plurality of principal components of a data set; and generating a final estimate for each principal component by repeatedly performing operations comprising: generating a reward estimate using the current estimate of the principal component, wherein the reward estimate is larger if the current estimate of the principal component captures more variance in the data set; generating, for each parent principal component of the principal component, a punishment estimate, wherein the punishment estimate is larger if the current estimate of the principal component and the current estimate of the parent principal component are not orthogonal; and updating the current estimate of the principal component according to a difference between the reward estimate and the punishment estimates.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024086745A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024086745A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024086745A13</originalsourceid><addsrcrecordid>eNrjZLBzcQ1xDfL19PP0c1cICPL0c_YMcPRRcPb3DfD3c_ULCVYIDQZJ-Yb6hHjqOroDhRQ8_YBaHJ1DPP39eBhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRiYGFmbmJqaOhMXGqADxwK5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DETERMINING PRINCIPAL COMPONENTS USING MULTI-AGENT INTERACTION</title><source>esp@cenet</source><creator>Gemp, Ian Michael ; McWilliams, Brian</creator><creatorcontrib>Gemp, Ian Michael ; McWilliams, Brian</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining principal components of a data set using multi-agent interactions. One of the methods includes obtaining initial estimates for a plurality of principal components of a data set; and generating a final estimate for each principal component by repeatedly performing operations comprising: generating a reward estimate using the current estimate of the principal component, wherein the reward estimate is larger if the current estimate of the principal component captures more variance in the data set; generating, for each parent principal component of the principal component, a punishment estimate, wherein the punishment estimate is larger if the current estimate of the principal component and the current estimate of the parent principal component are not orthogonal; and updating the current estimate of the principal component according to a difference between the reward estimate and the punishment estimates.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240314&amp;DB=EPODOC&amp;CC=US&amp;NR=2024086745A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240314&amp;DB=EPODOC&amp;CC=US&amp;NR=2024086745A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gemp, Ian Michael</creatorcontrib><creatorcontrib>McWilliams, Brian</creatorcontrib><title>DETERMINING PRINCIPAL COMPONENTS USING MULTI-AGENT INTERACTION</title><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining principal components of a data set using multi-agent interactions. One of the methods includes obtaining initial estimates for a plurality of principal components of a data set; and generating a final estimate for each principal component by repeatedly performing operations comprising: generating a reward estimate using the current estimate of the principal component, wherein the reward estimate is larger if the current estimate of the principal component captures more variance in the data set; generating, for each parent principal component of the principal component, a punishment estimate, wherein the punishment estimate is larger if the current estimate of the principal component and the current estimate of the parent principal component are not orthogonal; and updating the current estimate of the principal component according to a difference between the reward estimate and the punishment estimates.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBzcQ1xDfL19PP0c1cICPL0c_YMcPRRcPb3DfD3c_ULCVYIDQZJ-Yb6hHjqOroDhRQ8_YBaHJ1DPP39eBhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRiYGFmbmJqaOhMXGqADxwK5A</recordid><startdate>20240314</startdate><enddate>20240314</enddate><creator>Gemp, Ian Michael</creator><creator>McWilliams, Brian</creator><scope>EVB</scope></search><sort><creationdate>20240314</creationdate><title>DETERMINING PRINCIPAL COMPONENTS USING MULTI-AGENT INTERACTION</title><author>Gemp, Ian Michael ; McWilliams, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024086745A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Gemp, Ian Michael</creatorcontrib><creatorcontrib>McWilliams, Brian</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gemp, Ian Michael</au><au>McWilliams, Brian</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DETERMINING PRINCIPAL COMPONENTS USING MULTI-AGENT INTERACTION</title><date>2024-03-14</date><risdate>2024</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining principal components of a data set using multi-agent interactions. One of the methods includes obtaining initial estimates for a plurality of principal components of a data set; and generating a final estimate for each principal component by repeatedly performing operations comprising: generating a reward estimate using the current estimate of the principal component, wherein the reward estimate is larger if the current estimate of the principal component captures more variance in the data set; generating, for each parent principal component of the principal component, a punishment estimate, wherein the punishment estimate is larger if the current estimate of the principal component and the current estimate of the parent principal component are not orthogonal; and updating the current estimate of the principal component according to a difference between the reward estimate and the punishment estimates.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024086745A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title DETERMINING PRINCIPAL COMPONENTS USING MULTI-AGENT INTERACTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Gemp,%20Ian%20Michael&rft.date=2024-03-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024086745A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true