DETERMINING PRINCIPAL COMPONENTS USING MULTI-AGENT INTERACTION
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining principal components of a data set using multi-agent interactions. One of the methods includes obtaining initial estimates for a plurality of principal components of a data set; and genera...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Gemp, Ian Michael McWilliams, Brian |
description | Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining principal components of a data set using multi-agent interactions. One of the methods includes obtaining initial estimates for a plurality of principal components of a data set; and generating a final estimate for each principal component by repeatedly performing operations comprising: generating a reward estimate using the current estimate of the principal component, wherein the reward estimate is larger if the current estimate of the principal component captures more variance in the data set; generating, for each parent principal component of the principal component, a punishment estimate, wherein the punishment estimate is larger if the current estimate of the principal component and the current estimate of the parent principal component are not orthogonal; and updating the current estimate of the principal component according to a difference between the reward estimate and the punishment estimates. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024086745A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024086745A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024086745A13</originalsourceid><addsrcrecordid>eNrjZLBzcQ1xDfL19PP0c1cICPL0c_YMcPRRcPb3DfD3c_ULCVYIDQZJ-Yb6hHjqOroDhRQ8_YBaHJ1DPP39eBhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRiYGFmbmJqaOhMXGqADxwK5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DETERMINING PRINCIPAL COMPONENTS USING MULTI-AGENT INTERACTION</title><source>esp@cenet</source><creator>Gemp, Ian Michael ; McWilliams, Brian</creator><creatorcontrib>Gemp, Ian Michael ; McWilliams, Brian</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining principal components of a data set using multi-agent interactions. One of the methods includes obtaining initial estimates for a plurality of principal components of a data set; and generating a final estimate for each principal component by repeatedly performing operations comprising: generating a reward estimate using the current estimate of the principal component, wherein the reward estimate is larger if the current estimate of the principal component captures more variance in the data set; generating, for each parent principal component of the principal component, a punishment estimate, wherein the punishment estimate is larger if the current estimate of the principal component and the current estimate of the parent principal component are not orthogonal; and updating the current estimate of the principal component according to a difference between the reward estimate and the punishment estimates.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240314&DB=EPODOC&CC=US&NR=2024086745A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240314&DB=EPODOC&CC=US&NR=2024086745A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gemp, Ian Michael</creatorcontrib><creatorcontrib>McWilliams, Brian</creatorcontrib><title>DETERMINING PRINCIPAL COMPONENTS USING MULTI-AGENT INTERACTION</title><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining principal components of a data set using multi-agent interactions. One of the methods includes obtaining initial estimates for a plurality of principal components of a data set; and generating a final estimate for each principal component by repeatedly performing operations comprising: generating a reward estimate using the current estimate of the principal component, wherein the reward estimate is larger if the current estimate of the principal component captures more variance in the data set; generating, for each parent principal component of the principal component, a punishment estimate, wherein the punishment estimate is larger if the current estimate of the principal component and the current estimate of the parent principal component are not orthogonal; and updating the current estimate of the principal component according to a difference between the reward estimate and the punishment estimates.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBzcQ1xDfL19PP0c1cICPL0c_YMcPRRcPb3DfD3c_ULCVYIDQZJ-Yb6hHjqOroDhRQ8_YBaHJ1DPP39eBhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRiYGFmbmJqaOhMXGqADxwK5A</recordid><startdate>20240314</startdate><enddate>20240314</enddate><creator>Gemp, Ian Michael</creator><creator>McWilliams, Brian</creator><scope>EVB</scope></search><sort><creationdate>20240314</creationdate><title>DETERMINING PRINCIPAL COMPONENTS USING MULTI-AGENT INTERACTION</title><author>Gemp, Ian Michael ; McWilliams, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024086745A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Gemp, Ian Michael</creatorcontrib><creatorcontrib>McWilliams, Brian</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gemp, Ian Michael</au><au>McWilliams, Brian</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DETERMINING PRINCIPAL COMPONENTS USING MULTI-AGENT INTERACTION</title><date>2024-03-14</date><risdate>2024</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining principal components of a data set using multi-agent interactions. One of the methods includes obtaining initial estimates for a plurality of principal components of a data set; and generating a final estimate for each principal component by repeatedly performing operations comprising: generating a reward estimate using the current estimate of the principal component, wherein the reward estimate is larger if the current estimate of the principal component captures more variance in the data set; generating, for each parent principal component of the principal component, a punishment estimate, wherein the punishment estimate is larger if the current estimate of the principal component and the current estimate of the parent principal component are not orthogonal; and updating the current estimate of the principal component according to a difference between the reward estimate and the punishment estimates.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024086745A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | DETERMINING PRINCIPAL COMPONENTS USING MULTI-AGENT INTERACTION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Gemp,%20Ian%20Michael&rft.date=2024-03-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024086745A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |