AI-BASED EMAIL GENERATOR
Historically, email sequences for sales and marketing must be generated manually, which is a time-intensive and labor-intensive process. Accordingly, disclosed embodiments use machine learning to automatedly generate personalized, relevant, and/or performant email sequences, at scale. In particular,...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Hasan, Amir bin Abu Thu, Nguyen Thanh Lorenz, Max Toan, Ethan Le Duc Jyi, Lim Ken Han, Gabriel Lim Yong |
description | Historically, email sequences for sales and marketing must be generated manually, which is a time-intensive and labor-intensive process. Accordingly, disclosed embodiments use machine learning to automatedly generate personalized, relevant, and/or performant email sequences, at scale. In particular, an email sequence may be generated by, for each email message in an email sequence and for each content block in the email message, generate a prompt based on one or more parameter values, input the prompt to a generative language model to produce the content block, and add the content block to the email message. In an embodiment, a user may easily regenerate the entire email sequence or regenerate individual content blocks within the email sequence. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024086648A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024086648A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024086648A13</originalsourceid><addsrcrecordid>eNrjZJBw9NR1cgx2dVFw9XX09FFwd_VzDXIM8Q_iYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkYmBhZmZiYWjobGxKkCAFKAIGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AI-BASED EMAIL GENERATOR</title><source>esp@cenet</source><creator>Hasan, Amir bin Abu ; Thu, Nguyen Thanh ; Lorenz, Max ; Toan, Ethan Le Duc ; Jyi, Lim Ken ; Han, Gabriel Lim Yong</creator><creatorcontrib>Hasan, Amir bin Abu ; Thu, Nguyen Thanh ; Lorenz, Max ; Toan, Ethan Le Duc ; Jyi, Lim Ken ; Han, Gabriel Lim Yong</creatorcontrib><description>Historically, email sequences for sales and marketing must be generated manually, which is a time-intensive and labor-intensive process. Accordingly, disclosed embodiments use machine learning to automatedly generate personalized, relevant, and/or performant email sequences, at scale. In particular, an email sequence may be generated by, for each email message in an email sequence and for each content block in the email message, generate a prompt based on one or more parameter values, input the prompt to a generative language model to produce the content block, and add the content block to the email message. In an embodiment, a user may easily regenerate the entire email sequence or regenerate individual content blocks within the email sequence.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240314&DB=EPODOC&CC=US&NR=2024086648A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240314&DB=EPODOC&CC=US&NR=2024086648A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hasan, Amir bin Abu</creatorcontrib><creatorcontrib>Thu, Nguyen Thanh</creatorcontrib><creatorcontrib>Lorenz, Max</creatorcontrib><creatorcontrib>Toan, Ethan Le Duc</creatorcontrib><creatorcontrib>Jyi, Lim Ken</creatorcontrib><creatorcontrib>Han, Gabriel Lim Yong</creatorcontrib><title>AI-BASED EMAIL GENERATOR</title><description>Historically, email sequences for sales and marketing must be generated manually, which is a time-intensive and labor-intensive process. Accordingly, disclosed embodiments use machine learning to automatedly generate personalized, relevant, and/or performant email sequences, at scale. In particular, an email sequence may be generated by, for each email message in an email sequence and for each content block in the email message, generate a prompt based on one or more parameter values, input the prompt to a generative language model to produce the content block, and add the content block to the email message. In an embodiment, a user may easily regenerate the entire email sequence or regenerate individual content blocks within the email sequence.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJBw9NR1cgx2dVFw9XX09FFwd_VzDXIM8Q_iYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkYmBhZmZiYWjobGxKkCAFKAIGg</recordid><startdate>20240314</startdate><enddate>20240314</enddate><creator>Hasan, Amir bin Abu</creator><creator>Thu, Nguyen Thanh</creator><creator>Lorenz, Max</creator><creator>Toan, Ethan Le Duc</creator><creator>Jyi, Lim Ken</creator><creator>Han, Gabriel Lim Yong</creator><scope>EVB</scope></search><sort><creationdate>20240314</creationdate><title>AI-BASED EMAIL GENERATOR</title><author>Hasan, Amir bin Abu ; Thu, Nguyen Thanh ; Lorenz, Max ; Toan, Ethan Le Duc ; Jyi, Lim Ken ; Han, Gabriel Lim Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024086648A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Hasan, Amir bin Abu</creatorcontrib><creatorcontrib>Thu, Nguyen Thanh</creatorcontrib><creatorcontrib>Lorenz, Max</creatorcontrib><creatorcontrib>Toan, Ethan Le Duc</creatorcontrib><creatorcontrib>Jyi, Lim Ken</creatorcontrib><creatorcontrib>Han, Gabriel Lim Yong</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hasan, Amir bin Abu</au><au>Thu, Nguyen Thanh</au><au>Lorenz, Max</au><au>Toan, Ethan Le Duc</au><au>Jyi, Lim Ken</au><au>Han, Gabriel Lim Yong</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AI-BASED EMAIL GENERATOR</title><date>2024-03-14</date><risdate>2024</risdate><abstract>Historically, email sequences for sales and marketing must be generated manually, which is a time-intensive and labor-intensive process. Accordingly, disclosed embodiments use machine learning to automatedly generate personalized, relevant, and/or performant email sequences, at scale. In particular, an email sequence may be generated by, for each email message in an email sequence and for each content block in the email message, generate a prompt based on one or more parameter values, input the prompt to a generative language model to produce the content block, and add the content block to the email message. In an embodiment, a user may easily regenerate the entire email sequence or regenerate individual content blocks within the email sequence.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024086648A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | AI-BASED EMAIL GENERATOR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Hasan,%20Amir%20bin%20Abu&rft.date=2024-03-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024086648A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |