LOSS-SCALING FOR DEEP NEURAL NETWORK TRAINING WITH REDUCED PRECISION

In training a deep neural network using reduced precision, gradient computation operates on larger values without affecting the rest of the training procedure. One technique trains the deep neural network to develop loss, scales the loss, computes gradients at a reduced precision, and reduces the ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Micikevicius, Paulius, Wu, Hao, Alben, Jonah
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Micikevicius, Paulius
Wu, Hao
Alben, Jonah
description In training a deep neural network using reduced precision, gradient computation operates on larger values without affecting the rest of the training procedure. One technique trains the deep neural network to develop loss, scales the loss, computes gradients at a reduced precision, and reduces the magnitude of the computed gradients to compensate for scaling of the loss. In one example non-limiting arrangement, the training forward pass scales a loss value by some factor S and the weight update reduces the weight gradient contribution by 1/S. Several techniques can be used for selecting scaling factor S and adjusting the weight update.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024078433A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024078433A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024078433A13</originalsourceid><addsrcrecordid>eNrjZHDx8Q8O1g12dvTx9HNXcPMPUnBxdQ1Q8HMNDXL0AVIh4f5B3gohQY6efiAF4Z4hHgpBri6hzq4uCgFBrs6ewZ7-fjwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAyMTA3MLE2NjR0Jg4VQANmCzG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>LOSS-SCALING FOR DEEP NEURAL NETWORK TRAINING WITH REDUCED PRECISION</title><source>esp@cenet</source><creator>Micikevicius, Paulius ; Wu, Hao ; Alben, Jonah</creator><creatorcontrib>Micikevicius, Paulius ; Wu, Hao ; Alben, Jonah</creatorcontrib><description>In training a deep neural network using reduced precision, gradient computation operates on larger values without affecting the rest of the training procedure. One technique trains the deep neural network to develop loss, scales the loss, computes gradients at a reduced precision, and reduces the magnitude of the computed gradients to compensate for scaling of the loss. In one example non-limiting arrangement, the training forward pass scales a loss value by some factor S and the weight update reduces the weight gradient contribution by 1/S. Several techniques can be used for selecting scaling factor S and adjusting the weight update.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240307&amp;DB=EPODOC&amp;CC=US&amp;NR=2024078433A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240307&amp;DB=EPODOC&amp;CC=US&amp;NR=2024078433A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Micikevicius, Paulius</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Alben, Jonah</creatorcontrib><title>LOSS-SCALING FOR DEEP NEURAL NETWORK TRAINING WITH REDUCED PRECISION</title><description>In training a deep neural network using reduced precision, gradient computation operates on larger values without affecting the rest of the training procedure. One technique trains the deep neural network to develop loss, scales the loss, computes gradients at a reduced precision, and reduces the magnitude of the computed gradients to compensate for scaling of the loss. In one example non-limiting arrangement, the training forward pass scales a loss value by some factor S and the weight update reduces the weight gradient contribution by 1/S. Several techniques can be used for selecting scaling factor S and adjusting the weight update.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDx8Q8O1g12dvTx9HNXcPMPUnBxdQ1Q8HMNDXL0AVIh4f5B3gohQY6efiAF4Z4hHgpBri6hzq4uCgFBrs6ewZ7-fjwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAyMTA3MLE2NjR0Jg4VQANmCzG</recordid><startdate>20240307</startdate><enddate>20240307</enddate><creator>Micikevicius, Paulius</creator><creator>Wu, Hao</creator><creator>Alben, Jonah</creator><scope>EVB</scope></search><sort><creationdate>20240307</creationdate><title>LOSS-SCALING FOR DEEP NEURAL NETWORK TRAINING WITH REDUCED PRECISION</title><author>Micikevicius, Paulius ; Wu, Hao ; Alben, Jonah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024078433A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Micikevicius, Paulius</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Alben, Jonah</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Micikevicius, Paulius</au><au>Wu, Hao</au><au>Alben, Jonah</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>LOSS-SCALING FOR DEEP NEURAL NETWORK TRAINING WITH REDUCED PRECISION</title><date>2024-03-07</date><risdate>2024</risdate><abstract>In training a deep neural network using reduced precision, gradient computation operates on larger values without affecting the rest of the training procedure. One technique trains the deep neural network to develop loss, scales the loss, computes gradients at a reduced precision, and reduces the magnitude of the computed gradients to compensate for scaling of the loss. In one example non-limiting arrangement, the training forward pass scales a loss value by some factor S and the weight update reduces the weight gradient contribution by 1/S. Several techniques can be used for selecting scaling factor S and adjusting the weight update.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024078433A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title LOSS-SCALING FOR DEEP NEURAL NETWORK TRAINING WITH REDUCED PRECISION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Micikevicius,%20Paulius&rft.date=2024-03-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024078433A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true