SYSTEMS AND METHODS FOR MACHINE LEARNING BASED FAST STATIC THERMAL SOLVER

Machine assisted systems and methods for enhancing the resolution of an IC thermal profile from a system analysis are described. These systems and methods can use a neural network based predictor, that has been trained to determine a temperature rise across an entire IC. The training of the predicto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHU, Deqi, KUMAR, Akhilesh, PAN, Hsiming, YANG, En-Cih, WEN, Jimin, XIA, Wenbo, SRINIVASAN, Karthik, LI, Ying-Shiun, CHUANG, Wen-Tze, CHANG, Norman
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHU, Deqi
KUMAR, Akhilesh
PAN, Hsiming
YANG, En-Cih
WEN, Jimin
XIA, Wenbo
SRINIVASAN, Karthik
LI, Ying-Shiun
CHUANG, Wen-Tze
CHANG, Norman
description Machine assisted systems and methods for enhancing the resolution of an IC thermal profile from a system analysis are described. These systems and methods can use a neural network based predictor, that has been trained to determine a temperature rise across an entire IC. The training of the predictor can include generating a representation of two or more templates identifying different portions of an integrated circuit (IC), each template associated with location parameters to position the template in the IC; performing thermal simulations for each respective template of the IC, each thermal simulation determining an output based on a power pattern of tiles of the respective template, the output indicating a change in temperature of a center tile of the respective template relative to a base temperature of the integrated circuit; and training a neural network. The trained predictor can be used to determine a temperature rise and then can be appended to a system level thermal profile of the IC to generate a detailed thermal profile of the IC.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024078362A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024078362A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024078362A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQANAsDqL-w4GzUFNR1zO5mECSQu4UnEqROIkW6v_j4gc4veXNVeAbCyUGzBYSie8sg-sKJDQ-ZIJIWHLIZzghkwWHLMCCEgyIp5IwAnfxSmWpZo_hOdXVz4VaOxLjN3V893Uah3t91U9_Yd3oXXM4tnuN2_a_9QXWaS3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEMS AND METHODS FOR MACHINE LEARNING BASED FAST STATIC THERMAL SOLVER</title><source>esp@cenet</source><creator>ZHU, Deqi ; KUMAR, Akhilesh ; PAN, Hsiming ; YANG, En-Cih ; WEN, Jimin ; XIA, Wenbo ; SRINIVASAN, Karthik ; LI, Ying-Shiun ; CHUANG, Wen-Tze ; CHANG, Norman</creator><creatorcontrib>ZHU, Deqi ; KUMAR, Akhilesh ; PAN, Hsiming ; YANG, En-Cih ; WEN, Jimin ; XIA, Wenbo ; SRINIVASAN, Karthik ; LI, Ying-Shiun ; CHUANG, Wen-Tze ; CHANG, Norman</creatorcontrib><description>Machine assisted systems and methods for enhancing the resolution of an IC thermal profile from a system analysis are described. These systems and methods can use a neural network based predictor, that has been trained to determine a temperature rise across an entire IC. The training of the predictor can include generating a representation of two or more templates identifying different portions of an integrated circuit (IC), each template associated with location parameters to position the template in the IC; performing thermal simulations for each respective template of the IC, each thermal simulation determining an output based on a power pattern of tiles of the respective template, the output indicating a change in temperature of a center tile of the respective template relative to a base temperature of the integrated circuit; and training a neural network. The trained predictor can be used to determine a temperature rise and then can be appended to a system level thermal profile of the IC to generate a detailed thermal profile of the IC.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240307&amp;DB=EPODOC&amp;CC=US&amp;NR=2024078362A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240307&amp;DB=EPODOC&amp;CC=US&amp;NR=2024078362A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHU, Deqi</creatorcontrib><creatorcontrib>KUMAR, Akhilesh</creatorcontrib><creatorcontrib>PAN, Hsiming</creatorcontrib><creatorcontrib>YANG, En-Cih</creatorcontrib><creatorcontrib>WEN, Jimin</creatorcontrib><creatorcontrib>XIA, Wenbo</creatorcontrib><creatorcontrib>SRINIVASAN, Karthik</creatorcontrib><creatorcontrib>LI, Ying-Shiun</creatorcontrib><creatorcontrib>CHUANG, Wen-Tze</creatorcontrib><creatorcontrib>CHANG, Norman</creatorcontrib><title>SYSTEMS AND METHODS FOR MACHINE LEARNING BASED FAST STATIC THERMAL SOLVER</title><description>Machine assisted systems and methods for enhancing the resolution of an IC thermal profile from a system analysis are described. These systems and methods can use a neural network based predictor, that has been trained to determine a temperature rise across an entire IC. The training of the predictor can include generating a representation of two or more templates identifying different portions of an integrated circuit (IC), each template associated with location parameters to position the template in the IC; performing thermal simulations for each respective template of the IC, each thermal simulation determining an output based on a power pattern of tiles of the respective template, the output indicating a change in temperature of a center tile of the respective template relative to a base temperature of the integrated circuit; and training a neural network. The trained predictor can be used to determine a temperature rise and then can be appended to a system level thermal profile of the IC to generate a detailed thermal profile of the IC.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQANAsDqL-w4GzUFNR1zO5mECSQu4UnEqROIkW6v_j4gc4veXNVeAbCyUGzBYSie8sg-sKJDQ-ZIJIWHLIZzghkwWHLMCCEgyIp5IwAnfxSmWpZo_hOdXVz4VaOxLjN3V893Uah3t91U9_Yd3oXXM4tnuN2_a_9QXWaS3w</recordid><startdate>20240307</startdate><enddate>20240307</enddate><creator>ZHU, Deqi</creator><creator>KUMAR, Akhilesh</creator><creator>PAN, Hsiming</creator><creator>YANG, En-Cih</creator><creator>WEN, Jimin</creator><creator>XIA, Wenbo</creator><creator>SRINIVASAN, Karthik</creator><creator>LI, Ying-Shiun</creator><creator>CHUANG, Wen-Tze</creator><creator>CHANG, Norman</creator><scope>EVB</scope></search><sort><creationdate>20240307</creationdate><title>SYSTEMS AND METHODS FOR MACHINE LEARNING BASED FAST STATIC THERMAL SOLVER</title><author>ZHU, Deqi ; KUMAR, Akhilesh ; PAN, Hsiming ; YANG, En-Cih ; WEN, Jimin ; XIA, Wenbo ; SRINIVASAN, Karthik ; LI, Ying-Shiun ; CHUANG, Wen-Tze ; CHANG, Norman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024078362A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHU, Deqi</creatorcontrib><creatorcontrib>KUMAR, Akhilesh</creatorcontrib><creatorcontrib>PAN, Hsiming</creatorcontrib><creatorcontrib>YANG, En-Cih</creatorcontrib><creatorcontrib>WEN, Jimin</creatorcontrib><creatorcontrib>XIA, Wenbo</creatorcontrib><creatorcontrib>SRINIVASAN, Karthik</creatorcontrib><creatorcontrib>LI, Ying-Shiun</creatorcontrib><creatorcontrib>CHUANG, Wen-Tze</creatorcontrib><creatorcontrib>CHANG, Norman</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHU, Deqi</au><au>KUMAR, Akhilesh</au><au>PAN, Hsiming</au><au>YANG, En-Cih</au><au>WEN, Jimin</au><au>XIA, Wenbo</au><au>SRINIVASAN, Karthik</au><au>LI, Ying-Shiun</au><au>CHUANG, Wen-Tze</au><au>CHANG, Norman</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEMS AND METHODS FOR MACHINE LEARNING BASED FAST STATIC THERMAL SOLVER</title><date>2024-03-07</date><risdate>2024</risdate><abstract>Machine assisted systems and methods for enhancing the resolution of an IC thermal profile from a system analysis are described. These systems and methods can use a neural network based predictor, that has been trained to determine a temperature rise across an entire IC. The training of the predictor can include generating a representation of two or more templates identifying different portions of an integrated circuit (IC), each template associated with location parameters to position the template in the IC; performing thermal simulations for each respective template of the IC, each thermal simulation determining an output based on a power pattern of tiles of the respective template, the output indicating a change in temperature of a center tile of the respective template relative to a base temperature of the integrated circuit; and training a neural network. The trained predictor can be used to determine a temperature rise and then can be appended to a system level thermal profile of the IC to generate a detailed thermal profile of the IC.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024078362A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title SYSTEMS AND METHODS FOR MACHINE LEARNING BASED FAST STATIC THERMAL SOLVER
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHU,%20Deqi&rft.date=2024-03-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024078362A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true