MANAGING DATA INGESTION AND STORAGE
An embodiment for managing data using machine learning models and information governance. The embodiment may automatically detect a data analysis request made within a system and identify subject datasets. The embodiment may automatically conduct shallow term assignments on each row and column of da...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Kabra, Namit Saillet, Yannick Gupta, Neerju |
description | An embodiment for managing data using machine learning models and information governance. The embodiment may automatically detect a data analysis request made within a system and identify subject datasets. The embodiment may automatically conduct shallow term assignments on each row and column of data in the subject datasets and automatically match the shallow term assignments for each row and column with a stored set of ranked terms, and automatically flag rows or columns matching with ranked terms above a predetermined threshold ranking for further analysis. The embodiment may automatically and continuously monitor and detect irrelevant metadata types to prevent subsequent analysis and storage of data including the irrelevant metadata types. The embodiment may automatically generate a criticality ranking for stored analysis datasets. The embodiment may detect low priority analysis datasets having a criticality ranking below a criticality threshold, and automatically place the low priority analysis datasets into cold storage. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024078241A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024078241A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024078241A13</originalsourceid><addsrcrecordid>eNrjZFD2dfRzdPf0c1dwcQxxVAAyXINDPP39FBz9XBSCQ_yDHN1deRhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRiYG5hZGJoaOhMXGqAM0vI24</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MANAGING DATA INGESTION AND STORAGE</title><source>esp@cenet</source><creator>Kabra, Namit ; Saillet, Yannick ; Gupta, Neerju</creator><creatorcontrib>Kabra, Namit ; Saillet, Yannick ; Gupta, Neerju</creatorcontrib><description>An embodiment for managing data using machine learning models and information governance. The embodiment may automatically detect a data analysis request made within a system and identify subject datasets. The embodiment may automatically conduct shallow term assignments on each row and column of data in the subject datasets and automatically match the shallow term assignments for each row and column with a stored set of ranked terms, and automatically flag rows or columns matching with ranked terms above a predetermined threshold ranking for further analysis. The embodiment may automatically and continuously monitor and detect irrelevant metadata types to prevent subsequent analysis and storage of data including the irrelevant metadata types. The embodiment may automatically generate a criticality ranking for stored analysis datasets. The embodiment may detect low priority analysis datasets having a criticality ranking below a criticality threshold, and automatically place the low priority analysis datasets into cold storage.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240307&DB=EPODOC&CC=US&NR=2024078241A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240307&DB=EPODOC&CC=US&NR=2024078241A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kabra, Namit</creatorcontrib><creatorcontrib>Saillet, Yannick</creatorcontrib><creatorcontrib>Gupta, Neerju</creatorcontrib><title>MANAGING DATA INGESTION AND STORAGE</title><description>An embodiment for managing data using machine learning models and information governance. The embodiment may automatically detect a data analysis request made within a system and identify subject datasets. The embodiment may automatically conduct shallow term assignments on each row and column of data in the subject datasets and automatically match the shallow term assignments for each row and column with a stored set of ranked terms, and automatically flag rows or columns matching with ranked terms above a predetermined threshold ranking for further analysis. The embodiment may automatically and continuously monitor and detect irrelevant metadata types to prevent subsequent analysis and storage of data including the irrelevant metadata types. The embodiment may automatically generate a criticality ranking for stored analysis datasets. The embodiment may detect low priority analysis datasets having a criticality ranking below a criticality threshold, and automatically place the low priority analysis datasets into cold storage.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD2dfRzdPf0c1dwcQxxVAAyXINDPP39FBz9XBSCQ_yDHN1deRhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRiYG5hZGJoaOhMXGqAM0vI24</recordid><startdate>20240307</startdate><enddate>20240307</enddate><creator>Kabra, Namit</creator><creator>Saillet, Yannick</creator><creator>Gupta, Neerju</creator><scope>EVB</scope></search><sort><creationdate>20240307</creationdate><title>MANAGING DATA INGESTION AND STORAGE</title><author>Kabra, Namit ; Saillet, Yannick ; Gupta, Neerju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024078241A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Kabra, Namit</creatorcontrib><creatorcontrib>Saillet, Yannick</creatorcontrib><creatorcontrib>Gupta, Neerju</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kabra, Namit</au><au>Saillet, Yannick</au><au>Gupta, Neerju</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MANAGING DATA INGESTION AND STORAGE</title><date>2024-03-07</date><risdate>2024</risdate><abstract>An embodiment for managing data using machine learning models and information governance. The embodiment may automatically detect a data analysis request made within a system and identify subject datasets. The embodiment may automatically conduct shallow term assignments on each row and column of data in the subject datasets and automatically match the shallow term assignments for each row and column with a stored set of ranked terms, and automatically flag rows or columns matching with ranked terms above a predetermined threshold ranking for further analysis. The embodiment may automatically and continuously monitor and detect irrelevant metadata types to prevent subsequent analysis and storage of data including the irrelevant metadata types. The embodiment may automatically generate a criticality ranking for stored analysis datasets. The embodiment may detect low priority analysis datasets having a criticality ranking below a criticality threshold, and automatically place the low priority analysis datasets into cold storage.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024078241A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | MANAGING DATA INGESTION AND STORAGE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kabra,%20Namit&rft.date=2024-03-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024078241A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |